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Abstract

We propose a new post-quantum key exchange algorithm based

on the integer module learning with errors (I-MLWE) problem. Our

ThreeBears algorithm is simple and performant, but our main goal

is to suggest MLWE over a generalized Mersenne field instead of a

polynomial ring. We also show how to secure the system against chosen

ciphertext attacks so that it can be used for public-key encryption.

1 Introduction

All widely-deployed key exchange and public-key encryption algorithms are

threatened by the possibility of a quantum computer powerful enough to run

Shor’s algorithm [33]. Consequently, there is a growing interest in developing

a suite of “post-quantum” algorithms which would resist attack by these

computers [25]. The most common approaches to addressing this threat

rely on the hardness of lattice problems, including variants such as learning
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with errors (LWE) [27], ring learning with errors (RLWE) [24], and module

learning with errors (MLWE) [22].

Overall, RLWE-based schemes [17, 16, 2] tend to be faster and have smaller

public keys and ciphertexts than those based on classical LWE [6]. This is

enabled by the extra structure that the ring provides, but there is a lingering

concern that this structure will enable new attacks [26]. This concern has

led to proposals for rings with less structure [3], and for rings to be replaced

with modules when the full ring structure is not necessary [7].

1.1 Our contribution

Here we propose a new cryptosystem based on integer module learning with

errors (I-MLWE), where the underlying ring is the integers modulo a gen-

eralized Mersenne number. This opens up a new set of implementation

options, and may have better (or worse!) security properties than a polyno-

mial ring.

There are few systems based on lattices modulo generalized Mersenne num-

bers. Gu’s concurrent work [12] covers some theoretical ground but contains

no concrete proposals, and Joux et al.’s system [1] offers less security than

intended [5]. We aimed to produce a practical I-MLWE system as a start-

ing point for analysis. To do this, we modified Kyber [7] to use I-MLWE

instead of MLWE. We call this cryptosystem ThreeBears, because its

modulus has the same shape as the one in Ed448-Goldilocks [15].

We also investigated possible changes beyond I-MLWE. When choosing pa-

rameters for LWE encryption algorithms, there is a tradeoff: more noise

means higher security but also a higher risk of decryption failure. For key

exchange, a small failure rate is mostly harmless, but for encryption it can

lead to lost data, or worse, a chosen-ciphertext attack [18]. Saarinen pro-

posed to improve this tradeoff by using an error-correcting code [30, 29].

We include a thorough analysis of this technique. Our analysis is mostly

unrelated to I-MLWE and may be of independent interest.
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Our system thus draws inspiration from several sources: Lyubashevsky-

Peikert-Regev [23] and Ding [20]’s LWE protocols; Kyber’s overall struc-

ture [7]; Saarinen’s error correction [30, 29]; and generalized Mersenne ring

structure with Goldilocks’ prime shape [15]. The resulting system is com-

petitive with other state-of-the-art RLWE KEMs in terms of simplicity, per-

formance and conjectured security level.

1.2 Notation

Let Z denote the integers. Let {0, 1}n denote the set of n-bit strings, and

let Bn denote the space of n-byte strings. For a ring R, let Rd and Rd×e be

the spaces of d-dimensional vectors and (d × e)-dimensional matrices over

R, respectively.

2 Generalized Mersenne rings

2.1 Polynomial rings

Most previous systems use polynomial rings of the form

Rpoly := (Z/qZ)[x]/P (x)

for some integer q and polynomial P of degree D. They also specify one or

more noise distributions χi over Rpoly, typically

χ :=
D−1∑
i=0

εix
i where εi ← ψ

where ψ is a distribution on the integers — perhaps a binomial [2], uni-

form or discrete Gaussian [8] distribution. Alternatively, the noise may be

chosen to have a fixed Hamming weight [3], or may be a consequence of

rounding [11]. In any case, for decryption to work we will need χi ·χj to be

“small” over R, i.e. for its coefficients to have standard deviation much less

than q. This condition usually forces the polynomial P to be sparse with

small coefficients.
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2.2 Rings modulo generalized Mersenne numbers

Here we take a slightly different approach. We choose an integer x and a

polynomial P of degree D, and set

N := P (x) and R := Z/NZ

That is, R is the ring of integers modulo a generalized Mersenne (GM)

number N . The integer x plays the role of both the modulus q and the formal

variable x in a polynomial ring. We generate the noise in the analogous

way:

χ :=

D−1∑
i=0

εix
i where εi ← ψ

Again, we need P to be sparse with small coefficients.

2.3 Pros and cons of pseudo-Mersenne rings

Both polynomial rings and GM rings have their advantages. Here is a brief

comparison.

Security Polynomial rings have been studied for longer, which makes

them a more conservative choice. Gu [12] shows a reduction between LWE

problems on polynomial and GM rings. The reduction isn’t tight: it in-

creases the noise by a factor of D in either direction. So it is meaningless

for practical systems, but it suggests that RLWE and I-RLWE may have

similar security.

Speed Cyclotomic polynomial rings that split mod q support very fast

in-place multiplication using the number-theoretic transform (NTT). These

rings use small coefficients, so they work well on small machines and they

vectorize well. GM rings don’t have these advantages, but they can take

advantage of a large multiplier and any existing hardware or software sup-

port for multi-precision arithmetic. Overall, their speed is competitive with

polynomial rings.
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Simplicity GM rings have complexity due to carry propagation. But it’s

easy to convert elements to and from bytes without wasting space, and it’s

easy to sample uniformly from the ring. There is also no need to send or

store anything in the NTT domain.

Noise amplification Non-cyclotomic rings amplify noise when reducing

modulo P or N , which leads to a slightly worse security vs. space trade-

off. GM rings can also be cyclotomic [12], but at a cost in complexity and

performance. Our ring amplifies noise by 3/2, which is the best for the

non-cyclotomic shapes we studied.

Summary Overall, we believe that generalized Mersenne rings are about

as suitable for this task as polynomial rings. These rings have received less

attention for lattice problems, and we are proposing ThreeBears as a step

toward correcting this gap.

2.4 Module-LWE

It is most convenient to exchange keys whose bit length is less than or equal

to the dimension of the ring. Post-quantum systems must contend with

Grover’s algorithm [14], so a 256-bit key is appropriate for high-security

systems.

We have chosen a ring of dimension 312, which allows us to transport a

256-bit key with error correction. However, this is too small a dimension

to effectively resist lattice reduction algorithms such as BKZ [32, 10]: a

dimension around 500-1000 is more appropriate. Like Kyber [7], we address

this problem by using the vector space Rd for some small dimension d.
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2.5 Noise distribution

We will make our noise distribution on the ring by applying a distribution

ψσ2 to each coordinate, where σ2 is the variance. When σ2 ≤ 1/2, let

ψσ2 :=


−1 with probability σ2/2

0 with probability 1− σ2

+1 with probability σ2/2

When σ2 > 1/2, let ψσ2 := ψ1/2 + ψσ2−1/2. Over the ring, we will sample

ψσ2 independently for each coefficient. Let

χσ2 :=
D−1∑
i=0

εi · xi ∈ R where εi ← ψσ2 independently

Over the module, let χdσ2 sample from Rd by sampling each coordinate i.i.d.

from χσ2 .

2.6 Sampling with coins

Let D be some distribution, or a set in which case we mean the uniform

distribution on that set. Let samp(D, c, n) be an efficient deterministic al-

gorithm which samples D using short random coins c and optional nonce n.

In our initial implementation, we do this by computing a stream of pseudo-

random values using the extendible-output function [[TODO: something

like]]

cSHAKE256(“ThreeBears v0.1”, c||n)

and then converts that stream into a sample of D.

[[TODO: distinguish ROM from PRF?]]

2.7 Clarifier

For non-cyclotomic rings, multiplying two samples of the noise distribution

produces a larger combined noise than necessary. We mitigate this by ap-

plying a clarifier. Let clar ∈ R∗ be chosen to minimize the variance of the
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coefficients of

clar · χ>σ2 · χσ2

If P = xD − xD/2 − 1, then the optimal clarifier is

clar = x−D/2 = xD/2 − 1

Because this clarifier matches the ring structure, multiplying by it is essen-

tially free.

2.8 Recommended parameters

For our main recommendations, we use the “golden Solinas” prime

N = 23120 − 21560 − 1

with x = 210 and P = x312 − x156 − 1. We analyze other parameter choices

in Appendix A, including different rings and toy parameters.

Our recommendations are given in Table 1. They all transport 256-bit

keys, so they have at most 128 bits of security against quantum attacks.

They have differing security margins against lattice attacks and chosen-

ciphertext attacks. We believe that the lattice attacks have more room for

improvement, and so have tuned the parameters to have a higher security

margin against them. The “+” instances use roughly 50% more noise, but

keep a low failure probability by applying 2-bit forward error correction.

Our main recommendation is MamaBear.

3 CPA-secure key encapsulation

GM rings are suitable for many of the same protocols that polynomial rings

are used for. We begin by describing key encapsulation mechanism (KEM)

along the lines of Lyubashevsky-Peikert-Regev [23] or Ding [20]. This is

shown in Figure 1. For this KEM, Alice and Bob’s secrets are ephemeral

and must never be reused, because otherwise a chosen-ciphertext attack
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PQ Security

System d ·D x σ2 FEC Failure Lattice CCA

BabyBear 2 · 312 210 3/8 0 2−133 130 120

MamaBear 3 · 312 210 9/32 0 2−153 201 138

PapaBear 4 · 312 210 1/4 0 2−148 275 134

BabyBear+ 2 · 312 210 19/32 2 2−148 140 134

MamaBear+ 3 · 312 210 1/2 2 2−147 218 137

PapaBear+ 4 · 312 210 3/8 2 2−188 290 173

Table 1: Main recommendations, failure probabilities, and log security esti-

mates against quantum attacks. [[TODO: Validate vs DropBear, con-

sider 7/16 for PapaBear+, tighten failure computations, and re-

build this table and the comparison one]]

might recover the private keys and messages. The mechanism consists of

three algorithms: KeygenCPA, EncapsCPA and DecapsCPA.

Alice Bob

pk = (s,A)

KeygenCPA():

s
R← {0, 1}256

a, εa ← χdσ2 , χ
d
σ2

M ← samp(Rd×d, s)

A←M · a+ εa

ct = (B, [[di]])

EncapsCPA(pk, k):

b, εb, ε
′
b ← χdσ2 , χ

d
σ2 , χσ2

M ← samp(Rd×d, s)

B ←M>b+ εb

Cb ← clar · b> ·A+ ε′b

di ← (Cb)i + ki · x2
DecapsCPA(ct, a):

Ca ← clar · a> ·B

ki ←
⌊
di−Cai
x/2

⌉

Figure 1: CPA-secure key exchange sketch. In the actual protocol, only

` = 4 bits of each di are sent.
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3.1 KeygenCPA

The key exchange mechanism begins by generating an ephemeral key. The

key must never be reused; see Section 4 for a version which supports key

reuse.

KeygenCPA proceeds as follows:

s
R← Bmatrix seed len

a, εa
R← χdσ2 , χ

d
σ2

M ← samp(Rd×d, s)

A ← M · a+ εa

The public key is (s,A) and the private key is a. In practice, s, a and εa will

also be sampled from coins, so a space-constrained implementation could

simply store those coins. In that case, the initial coins should be at least

320 bits long to prevent multi-target attacks.

The matrix seed len parameter is 32 bytes for all recommended instances.

3.2 EncapsCPA

The EncapsCPA((s,A); k) algorithm encrypts an n-bit symmetric key k

using the public key (s,A). The length n of key can be up to most the

dimension D. EncapsCPA first chooses secrets

b, εb, ε
′
b ← χdσ2 , χ

d
σ2 , χσ2

and computes

B := U(s)> · b+ εb and Cb := clar · b> ·A+ ε′b

Now we will use Cb to encapsulate a key k, using an approach similar

to LPR [23], Ding [20] and Kyber [7]. For LPR, we would output Cb +

Encode(k) for a suitable encoding function. But this wastes bits by sending
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more coefficients than necessary (d instead of n), and more bits per coeffi-

cient. Ding’s approach sends only the second-highest bit of each coefficient

(or rather, the highest coefficient after doubling), and extracts the highest

bit as the shared key. But we will need to choose the key for CCA-secure

key encapsulation. We also found that Ding’s approach sends too little in-

formation per coefficient (1 bit, and we would send a 2nd in order to encrypt

the key). We found that the ratio of estimated log security to bandwidth is

maximized by sending 3-4 bits per coefficient, like Kyber. We chose 4 for

implementation simplicity reasons.

Specifically, to encrypt the ith key bit, we extract ` bits of the eith coef-

ficient, where the parameter ` = 4 for all recommended instances and the

position

ei :=

{
i/2 if i is even

D − (i+ 1)/2 if i is odd

is the one with the ith-least noise amplification. Call these extracted bits

extract(`, i, Cb) :=

⌊
(Cb)i
x/2`

⌋
where Cb =

D−1∑
i=0

Cb,i · xi and 0 ≤ Cb,i < x

The encryption part of the capsule is then

di := extract(`, i, Cb) + ki · 2`−1 mod 2`

The output of EncapsCPA is the capsule

(B, D) where D := [[di]]
n−1
i=0

To encrypt an arbitrary-length message, we suggest a KEM-DEM approach

as in [13].

The addition of ε′b is probably unnecessary, but if it is omitted then our

security is based on learning with rounding instead of the better-studied

learning with errors.

10



3.3 DecapsCPA

The decapsulation algorithm DecapsCPA(a, (B,D)) decrypts the encap-

sulated key from the capsule and private key. It computes

Ca := a> ·B

It then subtracts this from the encoded key and finds the result by round-

ing:

ki :=

⌊
2 · di − extract(`+ 1, i, Ca)

2`

⌉
Note that di is doubled only because we extract one more bit on decapsula-

tion. The output of DecapsCPA is the key k := [[ki]]
n−1
i=0 .

The resulting key is almost always the same as the k that was input to

EncapsCPA, but with some small probability the key exchange will fail.

See Appendix B for an analysis of the failure probability.

3.4 Forward error correction

For any LWE system, adding more noise increases the security but also

the failure probability. Saarinen suggested using forward error correction

(FEC) to decrease the failure probability, allowing for higher noise [30, 29].

We adopted this design for ThreeBears.

Failures consist of mostly uncorrelated single-bit errors, so we needed a code

that corrects bit errors. We implemented a Melas-style BCH(511, 493, 5)

code [21], which can correct up to 2 errors in up to 511 bits at the cost of 18

bits of overhead. So in addition to a 256-bit key, we can encrypt 18 bits of

forward error correction for a total of 274 bits. This gives “+” versions of

our recommended parameters, which add 5−8% extra security, and an extra

margin against hybrid attacks, at a cost of 9 extra bytes of ciphertext.

Since we could encrypt up to D = 312 > 256 + 9 · 6 bits, we could correct

up to 6 errors with a BCH code, but we found it very complex to correct

more than 2 errors in constant time.
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We analyzed the effect of forward error correction on failure probability for

both key exchange and encryption. See Appendix B for the analysis, and

Appendix B.6 for a discussion of just how much this tradeoff buys us.

For CCA security the failure probability needs to be cryptographically neg-

ligible, but for ephemeral key exchange it doesn’t. Without error correction,

the noise parameters of BabyBear+, MamaBear+ and PapaBear+ give

failure probabilities of about 2−59, 2−57 and 2−71 respectively, which is per-

fectly acceptable for key exchange.

4 CCA-secure Key encapsulation

In the (quantum) random oracle model, we can convert this ephemeral key

exchange into a CCA-secure key exchange (and thus a public-key encryption

algorithm) with a variant of the Targhi-Unruh conversion [34]. This will

define algorithms KeygenCCA, EncapsCCA and DecapsCCA.

These algorithms use hash functions, just like the CPA versions. We require

those hash functions to be appropriately domain-separated, so that a CPA

key or ciphertext can’t be used as a CCA one, or vice versa. [[TODO:

implement]]

4.1 KeygenCCA

The key generation algorithm is the same, except that the private key is

(a,pka) instead of just a. That is, the public key is needed for decryp-

tion.

4.2 EncapsCCA

Let EncapsCPA(s,A; k; c) be the CPA-secure encapsulation algorithm

with an addition input of coins c. Instead of sampling from χσ2 or ψσ2
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at random, that algorithm samples them using samp(χσ2 ; c; i) for the ith

sample.

We will use this to build a CCA-secure encapsulation algorithm using a vari-

ant of the Targhi-Unruh transform [34]. As a consequence of this transform,

the sender doesn’t get to choose the encapsulated key, so instead it is an

output of EncapsCCA.

The function EncapsCCA(s,A) works as follows:

k0
R← {0, 1}seed length

iv
R← {0, 1}iv length

c, δ, k1 ← H(s||A||k0)

C,D ← EncapsCPA(s,A; k0; iv||c)

The capsule is then (iv, C,D, δ) and the shared secret is k1.

The recommended parameters are as follows:

• Seed length: 256 bits. This gives 256-bit resistance to brute force at-

tacks by classical adversaries and at least 128-bit resistance to quan-

tum ones.

• IV length: 0 bits. The IV is useful for preventing classical multi-target

attacks on many messages encrypted with the same public key. Such

attacks take 2192 hash operations, and so are impractical. However, to

reach NIST’s security category 5 against multi-target attacks, imple-

mentors could set this to 64 bits.

• Length of δ: 0 bits. Extra-conservative users may want the reassurance

that the Targhi-Unruh δ values provides, but we are confident that it

adds no security. See Appendix C for details.

• Length of c: 320 bits, to prevent multi-target attacks.
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4.3 DecapsCCA

The DecapsCCA algorithm recovers a shared secret from the private key

(a,pka) and a capsule (iv, C,D, δ).

It does this by recovering a

k0 ← DecapsCCA(C,D)

It then runs

(capsule′, k1)← EncapsCCA(pka; iv, k0)

If capsule′ is the same as the received capsule, then decapsulation is suc-

cessful and the shared secret is k1. Otherwise decapsulation fails.

The Targhi-Unruh tag δ isn’t used in decapsulation, except that re-encapsulation

must produce the same δ.

4.4 Security analysis

[[TODO: Need a security proof]]

There are three clear avenues of attack against ThreeBears. The first is

to brute-force the seeds or transported keys using Grover’s algorithm [14].

Those keys are all 256 bits, so this takes about 2128 effort.

The second avenue is to attack the I-MLWE problem itself, most likely with

a lattice attack such as BKZ [32, 10]. We estimated the “core quantum

SVP hardness” of this attack using NewHope’s BKZ parameter estima-

tion scripts. We also used John Schanck’s estimator [31] to estimate the

cost of a hybrid attack [9]; in all cases, this was estimated to be harder

than a direct attack. These estimates should be very conservative, but we

wanted a large security margin because lattice attacks have the most room

for improvement.

The third avenue is a chosen-ciphertext attack on the supposedly-CCA-

secure KEM, where the attacker would gain information by causing decryp-

tion failures. The attacker could even use a quantum computer to find
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chosen ciphertexts that are more likely to fail. We analyze this attack in

detail in Appendix B.5. Our analysis uses conservative approximations, but

it is not provably tight so we have left a security margin. In addition to

being computationally infeasible, this attack would require an impractical

number of chosen ciphertexts.

PQ Security Size in bytes

System SVP CCA Failure SK PK CT

BabyBear 130 120 133 780 812 908

MamaBear 201 138 153 1170 1202 1298

PapaBear 275 134 148 1360 1592 1688

BabyBear+ 140 134 148 780 812 917

MamaBear+ 218 137 147 1170 1202 1307

PapaBear+ 290 173 188 1360 1592 1697

Kyber light [7] 102 169c 169 832 736 832

Kyber rec. [7] 161 142c 142 1248 1088 1184

Kyber paranoid [7] 218 145c 145 1664 1440 1536

JarJar [2] 118 - 55 896 928 1024

NewHope [2] 255 - 61 1792 1824 2048

trunc8 [30] 131 - 45 128 1024 1024

Hila5 [29] 255 135c 135 1792 1824 2012

NTRU ees743ep1 [17] 159 - 112 1120 1022 1022

S.NTRU′ 4591761 [3] 126 ∞ ∞ 382 1218 1047

NTRU KEM [19] 123 ∞ ∞ 382 1140 1281

Table 2: Security and message sizes for ThreeBears and related work.

Security estimates are log base 2 of the conservatively estimated attack

effort. Failure is -log base 2 of the failure probability. Entries marked c

assume a classical adversary. Private key sizes don’t include the public key.

[[TODO: Reconcile our numbers for NTRU Prime, and DJB’s and

Kyber’s]]

We compare the security of ThreeBears to similar systems in Table 2. The

biggest cost to increasing the security parameters for a Ring-LWE system
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is that the public key and messages become larger, so we compare this

information as well.

[[TODO: multi-target attacks. Probably can’t get private key

(320-bit seed), maybe can get ciphertexts if all encrypted to same

key, maybe need to salt everything.]]

5 Performance

We created a an implementation of ThreeBears in C, which is optimized

for performance, but also for simplicity and memory consumption. It uses

two levels of Karatsuba multiplication, and can take advantage of the Keccak

Code Package’s SIMD implementations (KCP) [4]. On x86-64, the code

uses a multiply-accumulate intrinsic in the inner loop, which gives a 10%

performance boost on Skylake. On other processors, it contains no assembly

language, but it can take advantage of 64 × 64 → 128-bit multiplication if

the CPU and compiler support uint128 t.

Our implementation follows this paper’s description of the private key as

the vector a in serialized form, plus the public key for CCA modes. There

are several possible size-speed tradeoffs. We could compress a at little cost,

because its coefficients are in [−1, 1]1, or we could skip serializing it. We

could store only a seed and re-derive the public and private key. Or we

could cache samp(Rd×d, s), which would speed up re-encryption. We didn’t

benchmark these tradeoffs.

We benchmarked our code on several different platforms. The results are

shown for Intel Skylake in Table 3; for ARM Cortex-A53 in Table 4; and

for ARM Cortex-A8 in Table 5. These are intended to represent comput-

ers, smartphones, and embedded devices respectively [[TODO: tiny IOT

m3 or AVR]]. Each table shows the compilation options used. We com-

pared ThreeBears’s performance to NewHope and Kyber. We see that

1Except for BabyBear+, where they’re in [−2, 2].
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out primary recommendation, MamaBear, is competitive with Kyber and

NewHope on Skylake.

The comparison isn’t fair on the ARM systems [[TODO: So remove it?

Or bench against Curve25519?]], because Kyber and NewHope have

more to gain from machine-specific optimizations. On the Cortex-A8, both

systems would benefit handily from NEON vectorization, but ThreeBears

links against KCP and its NEON-optimized Keccak code. On Cortex-

A53, ThreeBears doesn’t have this advantage (Keccak is faster in the

scalar unit) but it probably won’t gain anything from vectorization and

NewHope/Kyber probably will. Still, the comparison shows that Three-

Bears’s performance is at least respectable on those platforms.

For brevity, we omit benchmarks of the “+” versions with forward error cor-

rection, which costs only about 1% extra runtime. BabyBear+ is another

∼ 5% slower because the sampler does extra work when σ2 > 1/2.

6 Intellectual property

The authors are not aware of any patents which apply to this work. Do not

take this as a guarantee that there are no such patents, as cryptography is a

patent minefield and company policy prohibits looking for the mines.

The authors’ institutions intend for ThreeBears to be an open standard.

[[TODO: Statement from legal about how we won’t patent it, but

(depending what legal says) we might patent DPA countermea-

sures or something.]]

7 Conclusion

In this paper, we presented ThreeBears, a relatively simple instantiation

of module LWE based on generalized Mersenne numbers. This system pro-

vides an alternative to polynomial rings for ring- and module-LWE instances.
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Ephemeral CCA-secure

System Keygen Encaps Decaps Encaps Decaps

BabyBear 40k 56k 13k 64k 77k

MamaBear 83k 97k 17k 108k 126k

PapaBear 123k 146k 22k 160k 183k

NewHope AVX2 88k 118k 18k - -

Kyber AVX2 75k - - 110k 114k

Table 3: Performance in cycles on a NUC with Intel Core i3-6100U “Sky-

lake” 64-bit processor at 2.3GHz. Compiled with clang-3.9 -O2 -DNDEBUG

-march=native
Ephemeral CCA-secure

System Keygen Encaps Decaps Encaps Decaps

BabyBear 153k 205k 47k 217k 265k

MamaBear 302k 370k 65k 389k 456k

PapaBear 498k 584k 84k 607k 692k

NewHope ref 589k 913k 236k - -

Kyber ref 550k - - 751k 921k

Table 4: Performance in cycles on a Raspberry Pi 3 with Cortex-A53

64-bit processor at 1.2GHz. Compiled with clang-3.9 -O2 -DNDEBUG

-mcpu=cortex-a53

Ephemeral CCA-secure

System Keygen Encaps Decaps Encaps Decaps

BabyBear 363k 510k 139k 532k 678k

MamaBear 767k 970k 202k 1008k 1217k

PapaBear 1303k 1565k 266k 1605k 1886k

NewHope ref 1026k 1552k 377k - -

Kyber ref 1514k - - 1939k 2152k

Table 5: Performance cycles on a BeagleBone Black with Cortex-A8

32-bit processor at 1GHz. Compiled with clang-3.9 -O2 -DNDEBUG

-march=native
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It may be used exchange or public-key encryption, and we hope that it is

able to resist both classical and quantum attack in these settings. We have

shown that generalized Mersenne module-LWE performs competitively with

other module-LWE key exchange mechanisms.

We also improved the analysis of error correcting codes to reduce the failure

probability of module-LWE key exchange. Our techniques for that problem

may be of independent interest.

7.1 Future work

We plan to formally specify ThreeBears, or some closely related scheme,

in order to submit it to the NIST post-quantum cryptography project [25].

We also plan to improve the analysis of its security, and possibly to improve

the error correcting code or noise distributions. We welcome the publica-

tion of cryptanalysis, implementations, and systems derived from Three-

Bears.

7.2 Acknowledgements

Special thanks to John Schanck for his help in analyzing the hybrid at-

tack.
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A Other ring choices

Readers may be curious why we chose this specific ring

R = Z/NbearsZ where Nbears = 23120 − 21560 − 1

Certainly some sort of generalized Mersenne number is required to minimize

noise amplification, but why this one? The most obvious choice would be
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the integers modulo a Mersenne prime, such as p3217 := 23217−1. This prime

is conveniently equal to 212·268+1−1, which means that clar = 2 would work

nicely. However, the noise amplification in this ring is higher than in our

R, because after clarifying and reducing mod p3217 some coefficients will be

doubled. This increases the variance they contribute to the failure estimates

by a factor of 4, instead of 3/2 for Nbears.

It is not obvious that the modulus must even be prime. It seems likely that

sparse factors would lead to attacks, but possibly a generalized Mersenne or

Fermat number could be secure if it had no sparse factors. We didn’t want

to gamble on this.

A more general alternative is a cyclotomic field of the form Z/Φk(2)Z for

some k. Such a field will usually have unacceptable noise amplification, but

we can lift to Z/(2k±1)Z by choosing a clarifier divisible by (2k±1)/Φk(2).

For example, Φ2·607·13(2) works with clarifier 2280·13+1 − 2140·13 − 1. We did

not see an appreciable gain in this approach, but at least it’s mathematically

interesting.

Middle product learning with errors [28] would probably work with integers,

at some cost in performance.

A final possibility is a hybrid approach, where instead of (Z/qZ)[x]/P (x) or

Z/P (k)Z we choose a ring of the form

(Z/P (k)Z) [x] / (Q(k, x))

i.e. a polynomial ring over a GM field. We didn’t do this because we wanted

to keep things simple.

Within GM primes, golden-ratio ones seem to provide the smallest noise

amplification and the widest selection of implementation choices. Within

golden-ratio primes, our choice was driven by need for a digit size of at least

210 with a degree at least 256. It can also be used with x = 212 and D = 260,

but our estimates suggest that this has worse security. This might be useful

if hybrid attacks improve. The prime 22600 + 21300− 1 is also a good option,
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Security

System d ·D σ2 x FEC Hybrid Failure

GummyBear 1 · 270 7/32 28 0 50 42

TeddyBear+ 1 · 390 7/32 28 2 81 80

DropBear 2 · 312 5/4 210 0 157 12

Table 6: Toy bears.

but it’s more annoying to implement (due to being 2n + ε instead of 2n − ε)
and it doesn’t match the NIST security levels quite as well.

We chose a small ring size to make it easier to choose parameters by varying

d. If we wanted a ring-LWE solution (rather than module-LWE) with a

large modulus, we could use 22·12·905 − 212·905 − 1 or the “plastic” prime

212·720 − 212·480 − 1.

A.1 Toy parameters

We propose toy parameters to encourage cryptanalysis. Our first two toy

parameter sets, GummyBear and TeddyBear, have smaller digits, smaller

degrees and less noise. The noise is small enough to expose them to hybrid

lattice/meet-in-the-middle attacks [9]. Our third toy, DropBear, is like

BabyBear but with twice the noise and no error correction, which exposes

it to failure attacks.

A.2 Other noise distributions

Our ring and noise distribution result in uneven noise amplification: coeffi-

cients near xD/2 in the final result have more noise, and those near x0 and

xD have less. It might be worth shaping the noise distribution to counter

this problem. For example, we could add less noise to some coefficients,

or we could add correlated noise. This didn’t seem to be worth the extra

complexity of analysis and implementation.
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Another option would be to use noise with a fixed Hamming weight, like

NTRU Prime. This would lower the failure rate, but we decided that inde-

pendent noise would be easier to implement.

B Failure probability and chosen-ciphertext attacks

B.1 Correctness criterion

Let
D−1∑
i=0

ai · wi := Ca := clar · a> ·B

and
D−1∑
i=0

bi · wi := Cb := clar · b> ·A+ ε′b

and suppose we are extracting ` bits for encryption. Then if

|(ai − bi) mod x| ≤ (1− 21−`) · x
4

the decryption will be successful. This is because modulo x, we have

extract(Cb, i, `) =

⌊
bi
x/2`

⌋
=

bi
x/2`

− 1

2
− tb,i where tb,i ∈

[
−1

2
,
1

2
− 2`

x

]
The sender sends

di =
bi
x/2`

− 1

2
− tb,i + k · 2`−1

and the recipient extract the key bit

k′i =

⌊
2 · di − extract(`+ 1, i, Ca)

2`

⌉

=

2 · di −
⌊

ai
x/2`+1

⌋
2`


=

2 · di + 1−
⌈
ai+1
x/2`+1

⌉
2`
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Here the numerator is an integer, so the inner ceiling doesn’t change the

rounding. We now have

k′i =

⌊
2 · di + 1− ai+1

x/2`+1

2`

⌉

=

⌊
2 · (bi − ai − 1)

x
+

2 · k · 2`−1 − 2 · tb,i
2`

⌉
= k +

⌊
2 · (bi − ai)

x
− 1

x
−

tb,i
2`−1

⌉
Then by assumption

|2 · (ai − bi)|
x

≤ 1

2
− 1

2`

and ∣∣∣∣ tb,i2`−1
+

1

x

∣∣∣∣ ≤ 1

2`

so the rounded quantity is less than 1/2 and rounds to 0.

B.2 Failure probability without error correction

Here we quantify the failure probability for key exchange by computing the

distribution of ai − bi. One way to do this is to rewrite the ring as

Z[φ, x]/(φ2 − φ− 1, φ− xD/2)

We can then compute a distribution of coefficients in Z[φ]/(φ2 − φ− 1) and

their products, and raise them to the appropriate powers to compute a

distribution of ai − bi.

However, there are two additional wrinkles. First, there is the forward error

correction to consider. We might expect our double-error-correcting code to

cube the failure probability, but in fact there may be correlated failures (e.g.

if the ciphertext is particularly high-norm). Second, an attacker can search

for such failure-prone ciphertexts. Our implementation prevents the attacker

from forming the ciphertext dishonestly, but the attacker can try different

random seeds in order to maximize the probability of a failure.
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To model this more complex scenario, we note that each coefficient of χ is

in {−1, 0, 1}. However, multiplication can amplify this:

(a+ bφ) · (c+ dφ) = ac+ bd+ (ad+ bc+ bd)φ

= ac+ bd+ (ad+ b(c+ d))φ

Suppose c+ dφ is noise in the ciphertext, and a+ bφ is noise in the private

key. Then the coefficients on a, b are in {0,±1,±2}, where ±2 occurs only

on b and only if c = d = ±1.2

Since the coefficients affect the variance of the ciphertext, a coefficient of

±2 is roughly four times worse than a coefficient of ±1. We performed some

of the analyses in this section twice, in one case tracking the number of ±1

and ±2 coefficients, and in the other case tracking the variance. The results

were very similar, and tracking only the variance was much faster, so we

adopted that approach for all our analyses.

Let r be a ring element; it may be written in signed notation3 as

r =

D−1∑
i=0

cix
i where ci ∈ [−x/2, x/2)

Define its norm as

norm(r) :=

D−1∑
i=0

c2i

We will define the norm of a ciphertext U>b + εb with respect to output

position i as

normi(b, εb) :=

d−1∑
j=0

(
norm(b · clar · xi) + norm(εb · clar · xi)

)
For each possible norm n, we computed the distributions of the noise in the

output, plus additional noise of variance < 1 + σ2 due to carries and the

2The situation is more complicated for BabyBear+ since it has a larger noise, but

the method applies.
3This representation is unique except for elements with huge norm.
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addition of ε′b. With our rounding mechanism, the error probability ramps

from 0 at x/8 to 1 at 3x/8, and the conditional probability of a single bit

error is approximately

εn := Pr(bit error | n)

≤
n∑

z=x/8

z − x/8
x/4

· Pr((output difference is ± z) | n)

=
n∑

z=x/8

z − x/8
x/4

·
n∑

k=z
k+z even

(
n

k

)(
k

(k + z)/2

)
σ2k · (1− σ2)n−k

2k−1


Likewise, for each norm n and position i we computed the probability

δi,n := Pr(normi(ciphertext) is n)

that a random ciphertext will have that norm in position i. We did this

by convolving the distributions that each pair of opposite coefficients of the

ciphertext contributes to the norm.

After extracting B := 256 bits, the failure probability without error correc-

tion is then at most

p0 := Pr(bit failure anywhere) =

B−1∑
i=0

5d·D∑
w=0

εw · δi,w

by the union bound.

B.3 With error correction

When error correction is used, the calculation becomes more complex. We

might hope that the probability of an error after e errors have been cor-

rected would be pe+1
1 , but that would require assuming that failures are

uncorrelated. Unfortunately they are correlated in multiple ways, which we

have not fully studied. We have pinpointed and evaluated three causes of

correlation, which we believe to be the three most important:
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• Ciphertext norm: the larger the norm of the ciphertext, the higher the

probability of failaure.

• Secret key norm: the larger the norm of the secret key, the higher the

probability of failure.

• Correlation: some output bits are correlated for all ciphertexts.

We did not study the separate problem that some output bits may be cor-

related for a particular ciphertext, for example if the ciphertext has many

regularly spaced coefficients.

As for ciphertext norm, we already have the right tool δi,n to take care of

that. For secret key norm, we can define a corresponding γm which is the

probability that the secret key has norm m, and change εw to εm,n which

is the probability of an error with secret key of norm m and ciphertext of

norm n.

After correcting up to e errors in B := 256 + 18 bits, with a ciphertext ct,

we would expect a total error probability of

pe(ct) =
∑
key k

pr(k) ·
∑
|E|=e+1

∏
i∈E

εnormi(k),normi(ct)

<
1

(e+ 1)!
·
∑
key k

pr(k) ·

(
B−1∑
i=0

εnormi(k),normi(ct)

)e+1

≤ Be

(e+ 1)!
·
∑
key k

pr(k) ·

(
B−1∑
i=0

εe+1
normi(k),normi(ct)

)

by the power means inequality. By our approximation above, this is about

pe(ct) .
Be

(e+ 1)!
·
B−1∑
i=0

5dD∑
m=0

γm · εe+1
m,normi(ct)

for an overall total error estimate of

pe .
Be

(e+ 1)!
·
B−1∑
i=0

5dD∑
n=0

5dD∑
m=0

γm · δi,n · εe+1
m,n
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B.4 Correlation

However, we still need to deal with correlation. We were not able to analyze

expected correlation between all pairs of coefficients. We believe that the

effect of correlation will be small (after the above correction) for everything

except “opposite” bits, i.e. those separated by exactly D positions. Recall

again our equation for multiplication modulo φ2 − φ− 1:

(a+ bφ) · (c+ dφ) = e+ fφ := ac+ bd+ (ad+ bc+ bd)φ

Here we see that the equations for e and f share a term bd, which greatly

increases their correlation, so that if
∑
e crosses the error threshold x/8, it

is more likely that
∑
f will as well.

To bound the effect of this correlation, we calculated the probability that∣∣∣∑(2 · e+ 1 · f)
∣∣∣ > (2 + 1) · x/8

for if it does not, then
∑
e and

∑
f cannot both be greater than x/8.

(The coefficients 2 and 1 provide the tightest bound.) Call this probability

ηm,n. Experimentally, ηm,n is much larger than Nε2m,n, so the probability

of 3 errors is dominated by that of one single error and one double error in

opposite coefficients.

Instead of approximately B3/3! configurations, there are B/2 ways to have

a double error and (B− 2)/2 ways to have a distinct single error, for a total

of less than B2/2 configurations. So a more accurate estimate for the error

probability after correcting up to 2 errors is

p3 .
B

2
·
B∑
i=0

5d·D∑
m=0

5d·D∑
n=0

γm · δi,n · εm,n · ηm,n

Since we do not model a cost for queries, the attacker’s effort is 1/p3. We esti-

mated 1/p3 using the above approximation and entered it into Table 2.
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B.5 Quantum attacks

Finally, there is the possibility that an attacker may use Grover’s algorithm

to find ciphertexts with large norm, or which might otherwise be more likely

to cause failures. Suppose the attacker targets classes of ciphertexts – in this

case, of ciphertext norms – that cause failure with at least some probability

q; and that a given ciphertext has a probability p to be in those classes. If a

given class of ciphertexts appears with probability pct has a probability qct

to cause an error, then the attacker’s work per query would be about
√
p

and his probability of success per query would be∑
qct≥q

pct
p
· qct

for a total probability of success per unit effort of

pgr,e :=
∑
qct≥q

pct
p
· qct
√
p

We again apply power means to obtain

pgrover,e ≤
√∑
qct≥q

pct
p
· (qct

√
p)2

=

√∑
qct≥q

pct · q2ct

≤
√∑

all ct

pct · q2ct

Squaring and expanding pct and qct as above, we then obtain

p2grover,3 ≤
∑
all ct

pct · q2ct

≈
∑
all ct

pct

(
B

2
·
B−1∑
i=0

5dD∑
m=0

γm · εm,normi(ct) · ηm,normi(ct)

)2

≤
∑
all ct

pct ·
B3

4
·
B−1∑
i=0

5dD∑
m=0

γm · (εm,normi(ct) · ηm,normi(ct))
2

=
B3

4
·
B−1∑
i=0

5dD∑
m=0

δi,nγm · (εm,n · ηm,n)2
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Errors corrected 0 soft 1 2 3 4 5 6

Max variance in 32nds 9 12 13 16 18 20 22 24

Quantum security 201 209 212 218 222 225 229 232

Table 7: Effectiveness of forward error correction in MamaBear.

We computed this and took the square root to recover the estimated effort

for the CCA attack in Table 2.

B.6 Effectiveness of error correction

To investigate the effectiveness of error correction, we designed variants of

MamaBear, but with different variance and different error correction levels.

We compared what variance would give us at least 128 bits of security against

quantum CCA attacks, and what the SVP hardness would be for passive

attacks at that variance. We included BCH codes which correct n errors at

the cost of 9n bits. The results are shown in Table 7. We can see that our

Melas FEC adds about 17 bits of security.

We also included a soft parity code. This code adds a parity bit for each

64-bits quadrant of the key. We consider a decoded bit “doubtful” if its

coefficient is within a certain numerically-optimized distance of decoding in

the opposite way. Then if the parity bit indicates an error, all doubtful

bits in the quadrant are flipped. This is easier to implement in constant

time than finding the most-doubtful bit. Using quadrants mitigates the

correlation problems listed above, because correlated bits are in different

quadrants, and works with any D ≥ 260.

B.7 Future work

There is a further possibility that ciphertexts may cause correlated failures

that break error correction for reasons other than their norms, for example

if they have regularly-spaced large coefficients. Furthermore, there is the

possibility that some sort of “fuzzy Grover” sampling algorithm could do
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better than our Grover attack with a hard threshold. These attacks may

further reduce security against failure. We leave analysis of this problem to

future work.

C Why no Targhi-Unruh δ?

In Section 4.2, we recommended not to use the Targhi-Unruh δ tag. It adds

a small amount of complexity and bandwidth, and we believe that it adds

no security. Here we sketch of why. [[TODO: turn this into a real

proof]]

Recall that EncapsCCA is given a public key pk = s,A and chooses a

random seed k0. It then computes

c, δ, k1 ← H(pk||k0)

It uses c along with pk to produce the KEM and DEM values B and D

respectively, sends δ in the clear, and outputs k1 as the final key. On de-

cryption, δ isn’t used directly. But DecapsCCA recovers k0 and re-runs

EncapsCCA to check that the capsule was formed honestly, including the

tag δ.

Intuitively, δ serves little purpose, because the adversary is passing super-

positions of values (pk||k0) to the random oracle to compute c anyway. If

ciphertexts have different c values, then they have different B values with

overwhelming probability. Since c must match on re-encryption, checking

that δ must match is redundant.

But δ gets around a problem in extending the random oracle model (ROM)

security proof to the quantum world. Classically, a CCA simulator can just

check if any oracle query H(pk||k0) would have produced a given ciphertext,

so with high probability if the ciphertext is valid, the simulator already

knows k0. But the quantum oracle queries are superpositions, and there’s

no way to extract k0 from them. Indeed the adversary might not know

k0. However, the random oracle is quantum-indifferentiable from a random
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polynomial whose degree is at least twice the number of oracle queries the

adversary makes [35]. In that case, the simulator can find k0 since it’s a

root of the polynomial.

However, we think that the proof is patchable to work without δ, at least

in the case of ThreeBears. Recall that c is expanded using the random

oracle in order to sample noise vectors b and εb, and to compute

B = M> · b+ εb

where M is derived from pk. Therefore, c controls the low bits of the d×D
coefficients of B. The simulator can choose a random linear transform

T : (Z/2Z)d×D →: (Z/2Z)|k0|

Instead of the protocol sending δ, the simulator can first choose b, and sample

εb from χσ2 under the constraint that T (low bits of B) = δ. The sampling

algorithm should be efficient if σ2 isn’t too small. This construction should

be quantum-indifferentiable from a random oracle.

In summary, if the simulator controls the random oracle, it has enough power

to leak k0 through ciphertexts without requiring the tag δ. We believe that

δ also isn’t necessary for systems like Kyber that use rounding, but the

argument for why may need modification.
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