
Integer Module LWE key exchange and encryption:

The three bears

Mike Hamburg∗

Draft; expecting to add Hart Montgomery as co-author

July 19, 2017

Abstract

We propose a new post-quantum key exchange algorithm based

on the integer module learning with errors (I-MLWE) problem. Our

ThreeBears algorithm is simple and performant, but our main goal

is to suggest MLWE over a generalized Mersenne field instead of a

polynomial ring. We also show how to secure the system against chosen

ciphertext attacks so that it can be used for public-key encryption.

1 Introduction

All widely-deployed key exchange and public-key encryption algorithms are

threatened by the possibility of a quantum computer powerful enough to run

Shor’s algorithm [29]. Consequently, there is a growing interest in developing

a suite of “post-quantum” algorithms which would resist attack by these

computers [23]. The most common approaches to addressing this threat

rely on the hardness of lattice problems, including variants such as learning

with errors (LWE) [25], ring learning with errors (RLWE) [22], and module

learning with errors (MLWE) [21].

Overall, RLWE-based schemes [15, 14, 2] tend to be faster and have

smaller public keys and ciphertexts than those based on classical LWE [5].

∗Rambus Security Division

1

This is enabled by the extra structure that the ring provides, but there is

a lingering concern that this structure will enable new attacks [24]. This

concern has led to proposals for rings with less structure [3], and for rings to

be replaced with modules when the full ring structure is not necessary [6].

1.1 Our contribution

Here we propose a new cryptosystem based on integer module learning with

errors (I-MLWE), where the underlying ring is the integers modulo a general-

ized Mersenne number. This opens up a new set of implementation options,

and may have better (or worse!) security properties than a polynomial ring.

Our cryptosystem is called ThreeBears, because its modulus has the

same shape as the one in Ed448-Goldilocks [13].

There are few systems based on lattices modulo generalized Mersenne

numbers. Gu’s concurrent work [10] covers some theoretical ground but

contains no concrete proposals, and Joux et al.’s system [1] offers less security

than intended [4]. We propose ThreeBears as a starting point for practical

analysis.

When choosing parameters for LWE encryption algorithms, there is a

tradeoff: more noise means higher security but also a higher risk of de-

cryption failure. For key exchange, a small failure rate is mostly harmless,

but for encryption it can lead to lost data, or worse, a chosen-ciphertext

attack [16]. Saarinen proposed to improve this tradeoff by using an error-

correcting code [27, 26]. We include a thorough analysis of this technique.

Our analysis is mostly unrelated to I-MLWE and may be of independent

interest.

Our system thus draws inspiration from several sources: Kyber’s overall

structure [6]; Ding’s reconciliation [18]; Saarinen’s error correction [27]; and

generalized Mersenne ring structure with Goldilocks’ prime shape [13]. The

resulting system is competitive with other state-of-the-art RLWE KEMs in

terms of simplicity, performance and conjectured security level.

2

2 Generalized Mersenne rings

2.1 Polynomial rings

Most previous systems use polynomial rings of the form

Rpoly := (Z/qZ)[x]/P (x)

for some integer q and polynomial P of degree D. They also specify one or

more noise distributions χi over Rpoly, typically

χ :=

D−1∑
i=0

εix
i where εi ← ψ

where ψ is a distribution on the integers — perhaps a binomial [2], uniform

or discrete Gaussian [7] distribution. Alternatively, the noise may be chosen

to have a fixed Hamming weight [3], or may be a consequence of round-

ing [9]. In any case, for decryption to work we will need χi ·χj to be “small”

over R, i.e. for its coefficients to have standard deviation much less than

q. This condition usually forces the polynomial P to be sparse with small

coefficients.

2.2 Rings modulo generalized Mersenne numbers

Here we take a slightly different approach. We choose an integer x and a

polynomial P of degree D, and set

N := P (x) and R := Z/NZ

That is, R is the ring of integers modulo a generalized Mersenne (GM)

number N . The integer x plays the role of both the modulus q and the formal

variable x in a polynomial ring. We generate the noise in the analogous way:

χ :=
D−1∑
i=0

εix
i where εi ← ψ

We could instead use a fixed Hamming weight or even rounding. Again,

limiting errors generally requires P to be sparse with small coefficients.

3

2.3 Pros and cons of pseudo-Mersenne rings

Both polynomial rings and GM rings have their advantages. Here is a brief

comparison.

Security Polynomial rings have been studied for longer, which makes

them a more conservative choice. Gu [10] shows that the polynomial and

GM rings have equivalent security up to a factor of D noise increase in either

direction. This increase makes the reduction meaningless for ThreeBears,

but it suggests RLWE and I-RLWE may have similar security.

Multiplication algorithms Some polynomial rings support very fast

multiplication based on the number-theoretic transform (NTT). The NTT

can be performed in place, giving an intrinsic memory savings.

Other polynomial rings lack the extra structure required to support the

NTT — that P is cyclotomic and splits mod q — out of concerns that it

may lead to security problems [3]. GM rings, like these non-NTT rings, can

support multiplication using the näıve “schoolbook” algorithm, or faster

algorithms like Granger-Moss [11] or Karatsuba-Ofman [19] with Solinas re-

duction [30]. However, GM rings have to propagate carries whereas polyno-

mial rings have to reduce each coefficient; which is more expensive depends

on platform.

Processor support Polynomial rings typically have 10- to 14-bit q, so

they do arithmetic with 16-bit shorts and do not require multi-precision

arithmetic. This means they work well both on tiny machines with tiny

registers and on large machines with vector units.

Generalized Mersenne fields can use limbs as large as the CPU’s multi-

plier, so they are fast on large scalar CPUs and with existing cryptographic

hardware accelerators. They are also supported by existing multi-precision

arithmetic libraries.

Powers of 2 Making x or q a power of 2 makes it easier to convert to and

from wire formats, and simplifies reconciliation. It also simplifies uniform

4

sampling from the ring, which meaningfully reduces runtime. This is a

logical choice in a GM ring. For a polynomial ring, most systems use a

prime q, but some (such as NTRU [15]) use a power of 2.

Error amplification Non-cyclotomic rings amplify noise when reducing

modulo P or N . This results in slightly worse performance and security.

Cyclotomics are a natural choice for polynomial rings, but not as natural

for GM rings. Our rings amplify errors by a factor of up to 3/2.

Summary Overall, we believe that generalized Mersenne rings are about

as suitable for this task as polynomial rings. These rings have received less

attention for lattice problems, and we are proposing ThreeBears as a step

toward correcting this gap.

2.4 Module-LWE

It is most convenient to exchange keys whose bit length is less than or equal

to the dimension of the ring. Post-quantum systems must contend with

Grover’s algorithm [12], so a 256-bit key is appropriate for high-security

systems.

Accordingly, we have chosen a ring of dimension 312, which allows us to

transport a 256-bit key with error correction. However, this is too small a

dimension to effectively resist lattice reduction algorithms such as BKZ [28,

8]; for this, it seems that dimension 500-1000 is required. We address this

problem by using the vector space Rd for some small dimension d.

2.5 Error distribution

We will make our error distribution on the ring by applying a simple distri-

bution ψσ2 to each coordinate, where σ2 ≤ 1/2 is the variance. Let

ψσ2 :=


−1 with probability σ2/2

0 with probability 1− σ2

+1 with probability σ2/2

5

Failure prob. PQ Security

System d d ·D σ2 x Eph CCA Lattice CCA

BabyBear 2 624 11/32 1024 2−58 2−141 128 126

MamaBear 3 936 8/32 1024 2−71 2−171 197 151

PapaBear 4 1248 7/32 1024 2−70 2−170 270 152

Table 1: Main recommendations, failure probabilities, and log security esti-

mates against quantum attacks.

Over the module, we will use the error distribution

χσ2 :=

[
D−1∑
i=0

εi,j · xi
]d−1
j=0

∈ Rd where εi,j ← ψσ2 independently

That is, we will apply ψσ2 independently to each coefficient of each ring

element.

2.6 Recommended parameters

For our main recommendations, we let x = 210 and P = x312 − x156 − 1,

resulting in the “golden Solinas” prime

N = 23120 − 21560 − 1

The recommendations are given in Table 1. They all transport 256-bit

keys, so they have at most 128 bits of security against quantum attacks.

They have differing security margins against lattice attacks and chosen-

ciphertext attacks. We believe that the lattice attacks have more room for

improvement, and so have tuned the parameters to have a higher security

margin against them. Our main recommendation is MamaBear.

We analyze other parameter choices in Appendix A, including different

rings and toy parameters.

2.7 Clarifier

For non-cyclotomic rings, it turns out that multiplying two samples of the

error distribution produces a larger combined error than necessary. We will

6

mitigate this by applying a clarifier. Let clar ∈ R∗ be chosen to minimize

the variance of the coefficients of

clar · χ>σ2 · χσ2

If P = xD ± xD/2 − 1, then the optimal clarifier is

clar = x−D/2 = xD/2 ± 1

Because this clarifier matches the ring structure, multiplying by it is essen-

tially free.

2.8 Uniform distribution from seed

For our key exchange, we need the two parties to agree on a public, random

d × d square matrix over R. Like NewHope and Kyber, we do this by

expanding from a seed according to some function

U : {0, 1}seedlen → Rd×d

which we model as a random oracle. Internally, U uses cSHAKE-256.

3 Ephemeral key encapsulation

GM rings are suitable for many of the same protocols that polynomial rings

are used for. We begin by describing a Ding-like [18] key encapsulation

mechanism (KEM), as shown in Figure 1. For this KEM, Alice and Bob’s

secrets are ephemeral and must never be reused. The mechanism consists

of three algorithms: KeygenEph, EncapsEph and DecapsEph.

7

Alice Bob

(s,A)

a, (s,A)← KeygenEph() :

s
R← {0, 1}256

a, εa ← χσ2 , χσ2

A← U(s) · a+ εa

(B, h)

kb, (B, h)← EncapsEph(s,A) :

b, εb ← χσ2 , χσ2

B ← U(s)>b+ εb

Cb ← clar · b> ·A

(kb, h)← rec(Cb)

ka ← DecapsEph(a, (B, h)) :

Ca ← clar · a> ·B

(ka,)← rec(Ca + use(h))

Figure 1: Ephemeral key exchange

3.1 KeygenEph

The key exchange mechanism begins by generating an ephemeral key. The

key must never be reused; see Section 4 for a version which supports key

reuse.

KeygenEph first chooses a uniformly random seed s
R← {0, 1}256, which

is expanded to a d× d matrix U(s). It then chooses vectors a and εa inde-

pendently from χσ2 . The public key is

(s, A := U(s) · a+ εa)

and the private key is a.

3.2 EncapsEph

The EncapsEph(s,A) algorithm creates and encapsulates an n-bit shared

secret using the public key (s,A). We require that n ≤ D, and in practice we

will use n = 256. EncapsEph first chooses secrets b ← χσ2 and εb ← χσ2 ,

and computes

B := U(s)> · b+ εb and Cb := clar · b> ·A

8

EncapsEph then computes recn(Cb) as follows. Let Cb be written as

Cb =

D−1∑
i=0

ci · xi

Let

ci =
x

2
(Kb)i +

x

4
hi + smalli where 0 ≤ smalli <

x

8

That is, (Kb)i and hi are the top two bits of ci. The ring dimension is larger

than the desired key length, so we will use only some of these bits, according

to

reln := [0, n/2) ∪ [D − n/2, D)

Here we take the beginning and end coefficients because they have a slightly

lower error rate than the middle ones. The shared secret and help values are

then Kb := [[(Kb)i]] and h := [[hi]], respectively, for i ∈ reln. The output of

EncapsEph consists of the shared secret Kb and the capsule (B, h).

3.3 DecapsEph

The decapsulation algorithm DecapsEph(a, (B, h)) extracts the shared se-

cret from the capsule and private key. It first expands the help value to

use(h) :=
∑
i∈reln

1− 2 · hi
8

· x
8
· xi

and computes

Ca := a> ·B + use(h)

It then computes Ka by the same recn(Ca) as in EncapsEph. The resulting

key Ka probably agrees with the output Kb of EncapsEph, but with some

small probability the key exchange will fail. See Appendix B for an analysis

of the failure probability.

4 CCA-secure Key encapsulation

In the (quantum) random oracle model, we can convert this ephemeral key

exchange into a CCA-secure key exchange (and thus a public-key encryption

9

algorithm) with a variant of the Targhi-Unruh conversion [31]. This will

define algorithms KeygenCCA, EncapsCCA and DecapsCCA

4.1 Forward error correction

As with any LWE-based cryptosystem, the security and failure probability of

the system are both functions of the noise distribution. We chose noise that

puts the failure probability in an appropriate range for key exchange, around

2−58 for BabyBear1. For CCA-secure encryption, this failure rate is not

acceptable, because an attacker may learn information about the private

key every time there is a decryption error. To fix this, we follow Saari-

nen’s approach of using error correcting codes for forward error correction

(FEC) [27, 26].

We use a Melas-style BCH(511, 493, 5) code [20], which can correct 2

errors in up to 511 bits at the cost of 18 bits of overhead. Since the error

correction is sent in the clear, it gives 18 bits of information about the

key, so the key must be 18 bits longer. For simplicity, we round both of

these overheads up to 3 bytes. Our Melas code is fast, constant-time, and

moderately complex — some 65 lines of C.

Since our larger N gives a 312-bit key, it has room for up to 56 bits of

error correction. We would rather use a larger code which corrects more er-

rors, but a larger BCH code might be too complicated to correct in constant

time.

We analyzed the effect of forward error correction on failure probability

for both key exchange and encryption. See Appendix B for the analysis,

and Appendix B.6 for a discussion of just how much this tradeoff buys us.

4.2 KeygenCCA

The key generation algorithm is the same, except that the private key is

(a,pka) instead of just a. That is, the public key is needed for decryption.

Also, when generating keys using a pseudo-random generator, the generator

should be domain separated from ephemeral keygen to prevent mistakes.

1A failure probability of 10−5 per year is more than 2−52 per millisecond.

10

4.3 EncapsCCA

To encapsulate a message with CCA security, we run EncapsCCA(s,A).

This is a variant of EncapsEph which samples from χσ2 × χσ2 pseudoran-

domly using a hash function2 instead of randomly. Call this pseudorandom

sampler χsamp : {0, 1}256 → Rd ×Rd.
To encrypt a message m with the public key (s,A), EncapsCCA first

chooses a random 256-bit key β uniformly at random. It expands β to three

subkeys, each 256 bits long:

(sb, δ, kb) ← H(pka||β)

Here sb will be the seed to the sampler, and kb will be the encapsulated key.

The value δ is used only by the Targhi-Unruh proof 3. We then proceed as

in the KEM:

b, εb ← χsamp(sb)

B ← U>(s) · b+ εb

Cb ← clar · b> ·A

(mb, h) ← rec256+feclen(Cb)

We then encrypt β with forward error correction

γ ← mb ⊕ (β || fec compute(β))

Thus the masking key mb thus must be feclen bits longer than the seed β.

The capsule is then

(B, h, γ, δ)

and the shared secret key is kb.

[[TODO: make sure the proof goes through. Check if hashing

key is needed. Try to improve Targhi-Unruh to get rid of δ.]]

2That is, according to a random oracle.
3The δ value appears to be purely a proof artifact in Targhi-Unruh, and it is clearly

redundant in a classical context. Hopefully it will be obviated by an improved proof for

CCA-secure KEMs, but for now we include it out of caution.

11

4.4 DecapsCCA

The DecapsCCA algorithm recovers a shared secret from the private key

(a,pka) and a capsule (B, h, γ, δ). It begins as in DecapsEph:

Ca ← clar · a> ·B + use(h)

(ma,) ← rec256+feclen(Ca)

It then recovers β by

βa ← fec correct(ma ⊕ γ)

Finally, the decapsulation algorithm checks that EncapsCCA(β) produces

the same capsule. If so, it returns the secret key kb produced by EncapsCCA.

If not, decapsulation fails.

4.5 Security analysis

[[TODO: Need a security proof]]

There are three clear avenues of attack against ThreeBears. The first

is to brute-force the seeds or transported keys using Grover’s algorithm [12].

Those keys are all 256 bits, so this takes about 2128 effort.

The second avenue is to attack the I-MLWE problem itself, most likely

with a lattice attack such as BKZ [28, 8]. We estimated the “core quantum

SVP hardness” of this attack using NewHope’s BKZ parameter estimation

scripts. These estimates should be very conservative, but we wanted a large

security margin because lattice attacks have the most room for improvement.

The third avenue is a chosen-ciphertext attack on the supposedly-CCA-

secure KEM, where the attacker would gain information by causing decryp-

tion failures. The attacker could even use a quantum computer to find

chosen ciphertexts that are more likely to fail. We analyze this attack in

detail in Appendix B.5. Our analysis uses conservative approximations, but

it is not provably tight so we have left a security margin. In addition to

being computationally infeasible, this attack would require an impractical

number of chosen ciphertexts.

12

PQ Security Message bytes

System Lattice CCA Failure PK Capsule

BabyBear ephem 128 - 58 812 812

MamaBear ephem 197 - 71 1202 1202

PapaBear ephem 270 - 70 1592 1592

BabyBear CCA 128 126 141 812 882

MamaBear CCA 197 151 171 1202 1272

PapaBear CCA 270 152 170 1592 1662

Kyber light [6] 102 169c 169 736 832

Kyber rec. [6] 161 142c 142 1088 1184

Kyber paranoid [6] 218 145c 145 1440 1536

JarJar [2] 118 - 55 928 1024

NewHope [2] 255 - 61 1824 2048

trunc8 [27] 131 - 45 1024 1024

Hila5 [26] 255 135c 135 1824 2012

NTRU ees743p1 [15] 159 - 112 1022 1022

NTRU Prime [3] 126 ∞ ∞ 1232 1141

NTRU KEM [17] 123 ∞ ∞ 1140 1281

Table 2: Security and message sizes for ThreeBears and related work.

Security estimates are log base 2 of the conservatively estimated attack

effort. Failure is -log base 2 of the failure probability. Columns marked c

are against a classical adversary.

[[TODO: Reconcile our numbers for NTRU Prime, and DJB’s

and Kyber’s]]

[[TODO: NTRU KEM https://eprint.iacr.org/2017/667]] [[TODO:

Private key size?]]

We compare the security of ThreeBears to similar systems in Table 2.

The biggest cost to increasing the security parameters for a Ring-LWE sys-

tem is that the public key and messages become larger, so we compare this

information as well.

13

5 Performance

We created a reference implementation of ThreeBears in C, optimized

for simplicity and memory consumption. The reference code contains no

processor-specific optimizations, but it can take advantage of 64×64→ 128-

bit multiplication when the compiler and CPU support them.

Our reference code caches the expanded private key, which costs 416 · d
bytes on a 64-bit platform and 480 · d bytes on a 32-bit platform. For

CCA-secure decapsulation, it also caches the public key (which is needed to

re-encrypt) but not the matrix U(s).

We benchmarked our code on several different platforms. The results

are shown for Intel Skylake in Table 3; for ARM Cortex-A53 in Table 4; and

for ARM Cortex-A8 in Table 5. These are intended to represent computers,

smartphones, and embedded devices respectively [[TODO: tiny IOT m3

or AVR]]. Each table shows the compilation options used.

We compared our performance to the NewHope and Kyber’s reference C

code. As might be expected, on 64-bit platforms, all three bears are faster

than NewHope’s reference code, but they lose ground on 32-bit platforms.

This partially because ThreeBears uses multi-precision arithmetic, and

partially because it uses the slow, 64-bit cSHAKE-256 everywhere instead

of the faster, 32-bit ChaCha20. This can also be seen in comparison to

Kyber, which uses cSHAKE-128.

[[TODO: Optimized numbers]] [[TODO: Actually deploy cSHAKE]]

5.1 Intellectual property

The authors are not aware of any patents which apply to this work. Do not

take this as a guarantee that there are no such patents, as cryptography is

a patent minefield and company policy prohibits looking for the mines.

The authors’ institutions intend for ThreeBears to be an open stan-

dard. [[TODO: Statement from legal about how we won’t patent

it, but (depending what legal says) we might patent DPA coun-

termeasures or something.]]

14

Ephemeral CCA-secure

System Keygen Encaps Decaps Encaps Decaps

BabyBear 75k 92k 19k 102k 124k

MamaBear 147k 171k 27k 185k 215k

PapaBear 241k 275k 35k 292k 330k

NewHope 259k 385k 73k - -

Kyber 265k - - 322k 364k

Table 3: Performance in cycles on a NUC with Intel Core i3-6100U “Sky-

lake” 64-bit processor at 2.3GHz. Compiled with clang-3.9 -O2 -DNDEBUG

-march=native

Ephemeral CCA-secure

System Keygen Encaps Decaps Encaps Decaps

BabyBear 184k 240k 61k 256k 321k

MamaBear 368k 451k 86k 473k 564k

PapaBear 614k 724k 111k 751k 867k

NewHope 589k 913k 236k - -

Kyber 550k - - 751k 921k

Table 4: Performance in cycles on a Raspberry Pi 3 with Cortex-A53

64-bit processor at 1.2GHz. Compiled with clang-3.9 -O2 -DNDEBUG

-mcpu=cortex-a53

Ephemeral CCA-secure

System Keygen Encaps Decaps Encaps Decaps

BabyBear 618k 769k 161k 851k 1022k

MamaBear 1243k 1469k 235k 1585k 1832k

PapaBear 2083k 2382k 309k 2522k 2846k

NewHope 1026k 1552k 377k - -

Kyber 1514k - - 1939k 2152k

Table 5: Performance cycles on a BeagleBone Black with Cortex-A8

32-bit processor at 1GHz. Compiled with clang-3.9 -Os -DNDEBUG

-mcpu=cortex-a8 -mthumb

15

6 Future work

We plan to formally specify ThreeBears, or some closely related scheme,

in order to submit it to the NIST post-quantum cryptography project [23].

We also plan to improve the analysis of its security, and possibly to improve

the error correcting code or noise distributions. We welcome the publication

of cryptanalysis, implementations, and systems derived from ThreeBears.

7 Conclusion

In this paper, we presented ThreeBears, a relatively simple instantiation

of module LWE based on generalized Mersenne numbers. This system pro-

vides an alternative to polynomial rings for ring- and module-LWE instances.

It may be used exchange or public-key encryption, and we hope that it is

able to resist both classical and quantum attack in these settings. We have

shown that generalized Mersenne module-LWE performs competitively with

other module-LWE key exchange mechanisms.

We also improved the analysis of error correcting codes to reduce the

failure probability of module-LWE key exchange. Our techniques for that

problem may be of independent interest.

References

[1] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha.

A new public-key cryptosystem via mersenne numbers. Cryptology

ePrint Archive, Report 2017/481, 2017. http://eprint.iacr.org/

2017/481.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.

Post-quantum key exchange - a new hope. In USENIX Security 2016,

2016. http://eprint.iacr.org/2015/1092.

[3] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and

Christine van Vredendaal. NTRU prime. Cryptology ePrint Archive,

Report 2016/461, 2016. http://eprint.iacr.org/2016/461.

16

[4] Marc Beunardeau, Aisling Connolly, Rmi Graud, and David Nac-

cache. On the hardness of the Mersenne low Hamming ratio as-

sumption. Cryptology ePrint Archive, Report 2017/522, 2017. http:

//eprint.iacr.org/2017/522.

[5] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig,

Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:

Take off the ring! practical, quantum-secure key exchange from LWE.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’16, pages 1006–1018, New York, NY,

USA, 2016. ACM.

[6] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-

shevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYS-

TALS – kyber: a CCA-secure module-lattice-based KEM. Cryptology

ePrint Archive, Report 2017/634, 2017. http://eprint.iacr.org/

2017/634.

[7] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Ste-

bila. Post-quantum key exchange for the TLS protocol from the

ring learning with errors problem. IEEE Security and Privacy, 2015.

http://eprint.iacr.org/2014/599.

[8] Yuanmi Chen and Phong Nguyen. Bkz 2.0: Better lattice security esti-

mates. Advances in Cryptology–ASIACRYPT 2011, pages 1–20, 2011.

[9] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song.

Lizard: Cut off the tail! practical post-quantum public-key encryption

from LWE and LWR. Cryptology ePrint Archive, Report 2016/1126,

2016. http://eprint.iacr.org/2016/1126.

[10] Gu Chunsheng. Integer version of ring-LWE and its applications. Cryp-

tology ePrint Archive, Report 2017/641, 2017. http://eprint.iacr.

org/2017/641.

[11] Robert Granger and Andrew Moss. Generalised Mersenne numbers

revisited. Mathematics of Computation, 82(284):2389–2420, 2013.

17

[12] Lov K Grover. A fast quantum mechanical algorithm for database

search. In Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing, pages 212–219. ACM, 1996.

[13] Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology

ePrint Archive, Report 2015/625, 2015. http://eprint.iacr.org/

2015/625.

[14] Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman,

William Whyte, and Zhenfei Zhang. Choosing parameters for NTRU-

Encrypt. Cryptology ePrint Archive, Report 2015/708, 2015. http:

//eprint.iacr.org/2015/708.

[15] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. NTRU: A ring-

based public key cryptosystem. Algorithmic number theory, pages 267–

288, 1998.

[16] Nick Howgrave-Graham, Phong Q Nguyen, David Pointcheval, John

Proos, Joseph H Silverman, Ari Singer, and William Whyte. The im-

pact of decryption failures on the security of NTRU encryption. In

Annual International Cryptology Conference, pages 226–246. Springer,

2003.

[17] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe.

High-speed key encapsulation from NTRU. CHES, 2017. http://

eprint.iacr.org/2017/667.

[18] Xiaodong Lin Jintai Ding, Xiang Xie. A simple provably secure key

exchange scheme based on the learning with errors problem. Cryptol-

ogy ePrint Archive, Report 2012/688, 2012. Also published at EURO-

CRYPT 2014. http://eprint.iacr.org/2012/688.

[19] A Karabutsa and Yu Ofman. Multiplication of many-digital numbers

by automatic computers. Doklady Akademii Nauk SSSR, 145(2):293,

1962.

18

[20] Gilles Lachaud and Jacques Wolfmann. Sommes de kloosterman,

courbes elliptiques et codes cycliques en caractéristique 2. CR Acad.

Sci. Paris Sér. I Math, 305(20):881–883, 1987.

[21] Adeline Langlois and Damien Stehle. Worst-case to average-case reduc-

tions for module lattices. Cryptology ePrint Archive, Report 2012/090,

2012. http://eprint.iacr.org/2012/090.

[22] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices

and learning with errors over rings. Journal of the ACM (JACM),

60(6):43, 2013.

[23] Dustin Moody, Lily Chen, and Yi-Kai Liu. Post-quantum

crypto project, 2016. http://csrc.nist.gov/groups/ST/

post-quantum-crypto/.

[24] Chris Peikert. How (not) to instantiate ring-lwe. Cryptology ePrint

Archive, Report 2016/351, 2016. http://eprint.iacr.org/2016/351.

[25] Oded Regev. The learning with errors problem. Invited survey in CCC,

page 15, 2010.

[26] Markku-Juhani O. Saarinen. On reliability, reconciliation, and error

correction in ring-lwe encryption. Cryptology ePrint Archive, Report

2017/424, 2017. http://eprint.iacr.org/2017/424.

[27] Markku-Juhani Olavi Saarinen. Ring-LWE ciphertext compression and

error correction: Tools for lightweight post-quantum cryptography. In

Proceedings of the 3rd ACM International Workshop on IoT Privacy,

Trust, and Security, IoTPTS ’17, pages 15–22, New York, NY, USA,

2017. ACM.

[28] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Im-

proved practical algorithms and solving subset sum problems. Mathe-

matical programming, 66(1-3):181–199, 1994.

19

[29] Peter W Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM review, 41(2):303–

332, 1999.

[30] Jerome A. Solinas. Generalized mersenne numbers. Technical report,

Waterloo, 1999.

[31] Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum security

of the Fujisaki-Okamoto and OAEP transforms. Cryptology ePrint

Archive, Report 2015/1210, 2015. http://eprint.iacr.org/2015/

1210.

A Other ring choices

Readers may be curious why we chose this specific ring

R = Z/NbearsZ where Nbears = 23120 − 21560 − 1

Certainly some sort of generalized Mersenne number is required to minimize

error amplification, but why this one? We considered rings of a few other

shapes, but ultimately settled on R, as this section will explain.

The most obvious choice would be the integers modulo a Mersenne prime,

such as p3217 := 23217− 1. This prime is conveniently equal to 212·268+1− 1,

which means that clar = 2 would work nicely. However, the error ampli-

fication in this ring is higher than in our R, because after clarifying and

reducing mod p3217 some coefficients will be doubled. This increases the

variance they contribute to the failure estimates by a factor of 4, instead of

3/2 for Nbears.

It is not obvious that the modulus must even be prime. It seems likely

that sparse factors would lead to attacks, but possibly a generalized Mersenne

number would be secure if it had no sparse factors. We could even use a

Fermat number, but unfortunately these tend to have at least somewhat

sparse factors.

A more general alternative is a cyclotomic field of the form Z/Φk(2)Z for

some k. Such a field will usually have unacceptable error amplification, but

20

we can lift to Z/(2k±1)Z by choosing a clarifier divisible by (2k±1)/Φk(2).

For example, Φ2·607·13(2) works with clarifier 2280·13+1 − 2140·13 − 1. We did

not see an appreciable gain in this approach, though the resulting system is

at least mathematically interesting.

A final possibility is a hybrid approach, where instead of (Z/qZ)[x]/P (x)

or Z/P (k)Z we choose a ring of the form

(Z/P (k)Z) [x] / (Q(k, x))

In other words, we can build a polynomial ring on top of a generalized

Mersenne field, with multiple coefficients packed into each field element.

While this construction gives us many choices, it is also more complex.

Since the main goal of ThreeBears is to provide a clean alternative to

polynomial rings, this construction wouldn’t be as interesting to analyze.

Within Solinas primes, golden-ratio ones such as Nbears seem to provide

the smallest error amplification and the widest selection of implementation

choices. This is why we chose a golden-ratio Solinas prime over other Solinas

primes such as 212·256 − 212·103 − 1. Within golden-ratio Solinas primes, our

choice was driven by need for a digit size of at least 210 with a degree at

least 256 + 18 (for error correction).

We originally chose our N for degree D = 260 with x = 212, but it seems

that D = 312 and x = 210 is a better choice. If our narrow noise distribution

turns out to be a problem, then D = 260, x = 212 should be a good fallback.

A.1 Smaller rings without error correction: ThreeWolves

A final worthwhile option is P = x260+x130−1 with x = 210. This is incom-

patible with error correction (except for soft error correction) because it has

degree only 260, but it is otherwise a good choice. Reasonable parameters

are given in Table 7.

We would serialize elements of this ring as 2600 bits (325 bytes), dropping

the top bit if the element is at least than 22600. This has a negligible chance

of happening, and would only slightly increase the noise anyway.

It was difficult to decide whether to recommend the ThreeBears or

the ThreeWolves as our main proposal. The Bears’ error correction

21

PQ Security Bytes

System d ·D σ2 Lattice Failure PK Eph CCA

BabyWolf 2 · 260 8/32 98 92 682 682 746

MamaWolf 3 · 260 5/32 149 131 1007 1007 1071

PapaWolf 4 · 260 4/32 202 147 1332 1332 1396

Table 6: ThreeWolves with D = 260, x = 210 and no error correction.

Security Bytes

System d ·D σ2 Lattice Failure PK Eph CCA

GummyBear 1 · 270 10/64 54c/49q 59 302 302 371

TeddyBear 1 · 390 8/64 82c/74q 69 422 422 492

DropBear 2 · 270 5/64 112c/102q 92 572 572 641

Table 7: Toy bears with x = 28. Lattice security is listed against both

classical and quantum adversaries, because someone might actually break

these.

adds maybe 9% extra security at the expense of complexity. Due to their

larger dimension, they produce oversized keys and give less granularity to

tune security by changing d. On the other hand, I-MLWE is a new primitive

and post-quantum security is an emerging field, so we thought the higher

security estimates for the Bears made them more appropriate, and the

noise level in the Wolves is a little small for comfort. The Bears are also

slightly easier to implement due to N being less than a power of 2 rather

than greater, and are faster for their size on 64-bit platforms.

A.2 Toy parameters

We propose toy parameters to encourage cryptanalysis. Our toy param-

eters have x = 28, smaller degrees and less noise. This exposes them to

lattice attacks, and also another attack: due to the tiny amount of noise

per coefficient, the entropy of their private keys is almost small enough to

exhaust.

22

A.3 Other noise distributions

Our ring and noise distribution result in uneven error amplification: coeffi-

cients near xD/2 in the final result have more noise, and those near x0 and

xD have less. It might be worth shaping the noise distribution to counter

this problem. For example, we could add less noise to some coefficients,

or we could add correlated noise. This didn’t seem to be worth the extra

complexity of analysis and implementation.

Another option would be to use noise with a fixed Hamming weight,

like NTRU Prime. This would lower the failure rate, but we decided that

independent noise would be easier to implement.

B Failure probability and chosen-ciphertext attacks

B.1 Correctness criterion

Let
D−1∑
i=0

ei · wi := Ca := clar · a> ·B

and
D−1∑
i=0

ci · wi := Cb := clar · b> ·A

Then if ei − ci ∈ (−x/8, x/8) mod x, the two parties will agree on a secret

key. This is because modulo x, we have

ci = (Kb)i · x/2 + hi · x/4 + [0, x/4)

ei = di + hi · x/4− x/8 + carry

= (Ka)i · x/2 + [0, x/2) + hi · x/4− x/8 + carry

where carry ∈ [−1, 1], so that

(ei − ci) = ((Ka)i − (Kb)i) · x/2 + [0, x/2)− [0, x/4)− x/8 + carry

= ((Ka)i − (Kb)i) · x/2 + [−3x/8, 3x/8]

Therefore if (Ka)i 6= (Kb)i, we must have |ei − ci| ≥ x/8 as claimed. Now,

E − C = a> · (U(s)>b+ εb)− b> · (U(s)a+ εa) = a>εb − b>εa

23

If the coefficients of this value are small enough, then decoding will be

correct.

B.2 Failure probability without error correction

Here we quantify the failure probability for key exchange by explicitly com-

puting the distribution of the difference of each coefficient of E − C. One

way to do this is to rewrite the ring as

Z[φ, x]/(φ2 − φ− 1, φ− xD/2)

We can then compute a distribution of coefficients in Z[φ]/(φ2 − φ− 1) and

their products, and raise them to the appropriate powers to compute a

distribution of ei − ci.
For decryption of public-key-encrypted messages, the failure model is

more complicated for two reasons. First, there is the forward error correction

to consider. We might expect our double-error-correcting code to cube the

failure probability, but in fact there may be correlated failures (e.g. if the

ciphertext is particularly high-norm). Second, an attacker can search for

such failure-prone ciphertexts. Our implementation prevents the attacker

from forming the ciphertext dishonestly, but the attacker can try different

random seeds in order to maximize the probability of a failure.

To model this more complex scenario, we note that each coefficient of χ

is in {−1, 0, 1}. However, multiplication can amplify this:

(a+ bφ) · (c+ dφ) = ac+ bd+ (ad+ bc+ bd)φ

= ac+ bd+ (ad+ b(c+ d))φ

Suppose c+ dφ is noise in the ciphertext, and a+ bφ is noise in the private

key. Then the coefficients on a, b are in {0,±1,±2}, where ±2 occurs only

on b and only if c = d = ±1.

Since the coefficients affect the variance of the ciphertext, a coefficient of

±2 is roughly four times worse than a coefficient of ±1. We performed some

of the analyses in this section twice, in one case tracking the number of ±1

and ±2 coefficients, and in the other case tracking the variance. The results

24

were nearly identical, and tracking only the variance was much faster, so we

adopted that approach for all our analyses.

Let r be a ring element; it may be written in signed notation4 as

r =
D−1∑
i=0

cix
i where ci ∈ [−x/2, x/2)

define its norm

norm(r) :=

D−1∑
i=0

c2i

We will define the norm of a ciphertext U>b + εb with respect to output

position i as

normi(b, εb) :=
d−1∑
j=0

(
norm(b · clar · xi) + norm(εb · clar · xi)

)
The norm always at most 5dD. It can attain this only for i = D/2; for other

coefficients it tapers down to a maximum of 2dD at i = 0.

For each norm n ≤ 5 · d ·D, we computed the distributions of the noise

in the output. With our rounding mechanism, the error probability ramps

from 0 at x/8+1 to 1 at 3x/8−1, and the conditional probability of a single

bit error is

εn := Pr(bit error | n)

≤
n∑

z=x/8

z + 1/2− x/8
x/4

· Pr((output coeff is ± z) | n)

=
n∑

z=x/8

z + 1/2− x/8
x/4

·
n∑

k=z
k+z even

(
n

k

)(
k

(k + z)/2

)
σ2k · (1− σ2)n−k

2k−1


Likewise, for each norm n < 5dD and position i we computed the probability

δi,n := Pr(normi(ciphertext) is n)

4This representation is unique except for elements with huge norm.

25

that a random ciphertext will have that norm in position i. We did this

by convolving the distributions that each pair of opposite coefficients of the

ciphertext contributes to the norm.

After extracting B := min(D, 256+18) bits, the failure probability with-

out error correction is then at most

p0 := Pr(bit failure anywhere) =
B−1∑
i=0

5d·D∑
w=0

εw · δi,w

by the union bound.

B.3 With error correction

When error correction is used, the calculation becomes more complex. We

might hope that the probability of an error after e errors have been cor-

rected would be pe+1
1 , but that would require assuming that failures are

uncorrelated. Unfortunately they are correlated in multiple ways, which we

have not fully studied. We have pinpointed and evaluated three causes of

correlation, which we believe to be the three most important:

• Ciphertext norm: the larger the norm of the ciphertext, the higher the

probability of failaure.

• Secret key norm: the larger the norm of the secret key, the higher the

probability of failure.

• Correlation: some output bits are correlated for all ciphertexts.

We did not study the separate problem that some output bits may be cor-

related for a particular ciphertext, for example if the ciphertext has many

regularly spaced coefficients.

As for ciphertext norm, we already have the right tool δi,n to take care

of that. For secret key norm, we can define a corresponding γm which is the

probability that the secret key has norm m, and change εw to εm,n which

is the probability of an error with secret key of norm m and ciphertext of

norm n.

26

After correcting up to e errors, with a ciphertext ct, we would expect a

total error probability of

pe(ct) =
∑
key k

pr(k) ·
∑
|E|=e+1

∏
i∈E

εnormi(k),normi(ct)

<
1

(e+ 1)!
·
∑
key k

pr(k) ·

(
B−1∑
i=0

εnormi(k),normi(ct)

)e+1

≤ Be

(e+ 1)!
·
∑
key k

pr(k) ·

(
B−1∑
i=0

εe+1
normi(k),normi(ct)

)

by the power means inequality. By our approximation above, this is approx-

mately

pe(ct) .
Be

(e+ 1)!
·
B−1∑
i=0

5dD∑
m=0

γm · εe+1
m,normi(ct)

for an overall total error estimate of

pe .
Be

(e+ 1)!
·
B−1∑
i=0

5dD∑
n=0

5dD∑
m=0

γm · δi,n · εe+1
m,n

B.4 Correlation

However, we still need to deal with correlation. We were not able to analyze

expected correlation between all pairs of coefficients. We believe that the

effect of correlation will be small (after the above correction) for everything

except “opposite” bits, i.e. those separated by exactly D positions. Recall

again our equation for multiplication modulo φ2 − φ− 1:

(a+ bφ) · (c+ dφ) = e+ fφ := ac+ bd+ (ad+ bc+ bd)φ

Here we see that the equations for e and f share a term bd, which greatly

increases their correlation, so that if
∑
e crosses the error threshold x/8, it

is more likely that
∑
f will as well.

To bound the effect of this correlation, we calculated the probability that∣∣∣∑(2 · e+ 1 · f)
∣∣∣ > (2 + 1) · x/8

27

for if it does not, then
∑
e and

∑
f cannot both be greater than x/8. (The

coefficients 2 and 1 seem provide the tightest bound.) Call this probability

ηm,n. Experimentally, ηm,n is much larger than Nε2m,n, so the probability

of 3 errors is dominated by that of one single error and one double error in

opposite coefficients.

Instead of approximately B3/3! configurations, there are B/2 ways to

have a double error and (B− 2)/2 ways to have a distinct single error, for a

total of less than B2/2 configurations. So a more accurate estimate for the

error probability after correcting up to 2 errors is

p3 .
B

2
·
B∑
i=0

5d·D∑
m=0

5d·D∑
n=0

γm · δi,n · εm,n · ηm,n

Since we do not model a cost for queries, the attacker’s effort is 1/p3. We

estimated 1/p3 using the above approximation and entered it into Table 2.

B.5 Quantum attacks

Finally, there is the possibility that an attacker may use Grover’s algorithm

to find ciphertexts with large norm, or which might otherwise be more likely

to cause failures. Suppose the attacker targets classes of ciphertexts – in this

case, of ciphertext norms – that cause failure with at least some probability

q; and that a given ciphertext has a probability p to be in those classes. If a

given class of ciphertexts appears with probability pct has a probability qct

to cause an error, then the attacker’s work per query would be about
√
p

and his probability of success per query would be∑
qct≥q

pct
p
· qct

for a total probability of success per unit effort of

pgr,e :=
∑
qct≥q

pct
p
· qct
√
p

28

We again apply power means to obtain

pgrover,e ≤
√∑
qct≥q

pct
p
· (qct

√
p)2

=

√∑
qct≥q

pct · q2ct

≤
√∑

all ct

pct · q2ct

Squaring and expanding pct and qct as above, we then obtain

p2grover,3 ≤
∑
all ct

pct · q2ct

≈
∑
all ct

pct

(
B

2
·
B−1∑
i=0

5dD∑
m=0

γm · εm,normi(ct) · ηm,normi(ct)

)2

≤
∑
all ct

pct ·
B3

4
·
B−1∑
i=0

5dD∑
m=0

γm · (εm,normi(ct) · ηm,normi(ct))
2

=
B3

4
·
B−1∑
i=0

5dD∑
m=0

δi,nγm · (εm,n · ηm,n)2

We computed this and took the square root to recover the estimated effort

for the Failure+Grover attack in Table 2.

B.6 Effectiveness of error correction

We wish to compare the effectiveness of various degrees of error correction.

To do this, we generated variants of MamaBear, but with different variance

and different error correction. We compared what variance would give us

at least 128 bits of security against active quantum attacks, and what the

resulting security level would be against “known quantum” (Q) attacks5.

We included BCH codes which correct n errors at the cost of 9n bits. The

results are shown in Table 8. We can see that our Melas FEC adds about

19 bits of security.

5The real MamaBear has a slightly lower variance to leave a security margin, since

our analysis may not be tight.

29

Errors corrected 0 doubt 1 2 3 4 5 6

Max variance in 64ths 9 12 13 18 20 23 26 28

Quantum security 182 189 192 201 204 208 212 214

Table 8: Effectiveness of forward error correction in MamaBear

We also included a parity-based soft error correcting code. We consider

a bit “doubtful” if its coefficient is within a certain distance of decoding

in the opposite way. Then if the parity bit indicates an error, all doubtful

bits are flipped.6 To mitigate the correlation problems listed above, we

actually divide the key bits into 4 sections and perform the error correction

on each section; since the correlated bits are in separate sections they won’t

contribute to the probability of an uncorrectable double error. This would

allow us to correct some errors with only 4 extra bits, i.e. with D = 260.

B.7 Future work

There is a further possibility that ciphertexts may cause correlated failures

that break error correction for reasons other than their norms, for example

if they have regularly-spaced large coefficients. Furthermore, there is the

possibility that some sort of “fuzzy Grover” sampling algorithm could do

better than our Grover attack with a hard threshold. These attacks may

further reduce security against failure. We leave analysis of this problem to

future work.

6This is obviously less effective than flipping the most-doubtful bit, but it is easier to

implement in constant time.

30

