Module-LWE key exchange and encryption:
The three bears

Mike Hamburg*
Draft 1; expecting to add Hart Montgomery as co-author

June 18, 2017

Abstract

We propose a new post-quantum key exchange algorithm based on
the module learning with errors (mLWE) problem. Our THREEBEARS
algorithm is simple and performant, but our main goal is to suggest
mLWE over a pseudo-Mersenne field instead of a polynomial ring. We
also show how to build a public-key encryption system from the key

exchange algorithm.

1 Introduction

All widely-deployed key exchange and public-key encryption algorithms are
threatened by the possibility of a quantum computer powerful enough to run
Shor’s algorithm [28]. Consequently, there is a growing interest in developing
a suite of “post-quantum” algorithms which would resist attack by these
computers [21]. The most common approaches to addressing this threat
rely on the hardness of lattice problems, including variants such as learning
with errors (LWE) [24], ring learning with errors (fLWE) [20], and module
learning with errors (mLWE) [19].

Overall, rLWE-based schemes [15, 14, 2] tend to be faster and have
smaller public keys and ciphertexts than those based on classical LWE [6].

*Rambus Security Division

This is enabled by the extra structure that the ring provides, but there is
a lingering concern that this structure will enable new attacks [23]. This
concern has led to proposals for rings with less structure [4], and for rings to

be replaced with modules when the full ring structure is not necessary [3].

1.1 Our contribution

Here we propose a new cryptosystem based on mLWE, where the underlying
ring is the integers modulo a pseudo-Mersenne number. This opens up a
new set of implementation options, and may have better (or worse!) security
properties than a polynomial ring.

Our cryptosystem is called THREEBEARS, because its pseudo-Mersenne
prime has the same shape as the one in Ed448-Goldilocks [12].

There are few systems based on lattices modulo Mersenne and pseudo-
Mersenne numbers. Though previous proposals [1] have met with limited
success [5], we believe that combining pseudo-Mersenne lattices with state-
of-the-art key exchange protocols will at least be worth analyzing.

We also further explore Saarinen’s error correction trick [26, 25]. For
unauthenticated key exchange, we have tuned the parameters for a small
signal-to-noise ratio in order to minimize bandwidth costs and maximize
security. We did this at the cost of key exchange failures, which occur with
probability around 27°¢ for our weakest recommendation.

But for public-key encryption, failures may lead to a chosen-ciphertext
attack [16]. While we could use a larger signal-to-noise ratio, we instead
use error-correcting codes. With a code that corrects up to two errors, we
can roughly cube the failure probability. We then estimate the complexity of
attacks against the corrected key, and show that they are in line with security
estimates for lattice attacks. This analysis is mostly independent of the
pseudo-Mersenne lattice aspect of the design, and so may be of independent

interest.

2 Ring choice

The choice of ring is one of the most important decisions when designing a
ring-LWE-based system. Here we review polynomial rings, and then exam-

ine our choice, pseudo-Mersenne rings.

2.1 Polynomial rings

Most previous systems use polynomial rings of the form
R = (Z/qZ)[]/P(x)

for some integer ¢ and monic polynomial P. They also specify one or more
noise distributions y; over R. Typically the noise is defined as
deg(P)—1

X = g cix’ where ¢ « ¥
=0

where 1) may be a binomial [2], uniform or discrete Gaussian [7] distribution.
Alternatively, the noise may be chosen to have a fixed Hamming weight [4],
or may be a consequence of rounding [9]. In any case, for decryption to
work we will need x; - x; to be “small” over R, i.e. for its coefficients to have
standard deviation much less than ¢. This condition usually implies that

the polynomial P is sparse with small coefficients.

2.2 Rings modulo pseudo-Mersenne numbers

Here we take a slightly different approach. We choose an integer x and a

polynomial P, and set
N :=P(zx) and R:=Z/NZ

That is, R is the ring of integers modulo a Mersenne number or pseudo-
Mersenne number N. The integer = plays the role of both the modulus ¢
and the formal variable = in a polynomial ring. We can then choose the
noise in the analogous way:

deg(P)—1

X = E cix' where ¢ + v
=0

or we can use a fixed Hamming weight or even rounding. Again, limiting

errors generally requires P to be sparse with small coefficients.

For our main recommendations, we let z = 210 and P = 2312 — 2156 — 1,

resulting in the “golden Solinas” pseudo-Mersenne prime

N = 23120 o 21560 -1

270 135 _ 1
)

For some of our toy instances, we instead let z = 2% and P =«
92160 _ 91080 _

—x
resulting in N = 1. Both of these N values are prime, which
rules out attacks based on subrings. For an analysis of some other options,
see Appendix A.

In a break with tradition, deg(P) is neither prime nor a prime power. In
cyclotomic fields, using a prime or prime power mitigates weaknesses based

on subrings of R. But when N is prime there are no subrings of Z/NZ.

2.3 Pros and cons of pseduo-Mersenne rings

Both polynomial rings and pseudo-Mersenne rings have their advantages.

Here is a brief comparison.

Security The security of polynomial rings has been considered for longer,
which is reassuring. However, pseudo-Mersenne rings have a different ring
structure, and when N is prime they have no subrings. This may improve

or weaken security.

Multiplication algorithms Some polynomial rings support fast multi-
plication based on the number-theoretic transform (NTT). Since the NTT
can be performed in place, these rings have an intrinsic memory savings.
Elements can even be sampled and sent in the NTT domain [2], though
this constrains implementations and complicates the specification. Other
systems avoid the extra structure required to support the NTT — that P is
cyclotomic and splits mod ¢ — out of concerns that it may lead to security
problems [4].

Pseudo-Mersenne numbers support multiplication algorithms such as

Karatsuba-Ofman [18] or Granger-Moss [10], as well as Solinas reduction [29].

These algorithms are faster than naive “schoolbook” algorithm, but they are
not as efficient as NTT-based multiplication. Usually big-number multipli-

cation cannot be performed in-place.

Processor and hardware support Polynomial rings typically have 10-
to 14-bit ¢, so they do arithmetic with 16-bit shorts and do not require
multi-precision arithmetic. This means they work well both on tiny ma-
chines with tiny registers and on large machines with vector units. The
small coefficients make it easier to mitigate problems with multi-precision
arithmetic encountered on (for example) the ARM Cortex-M0 and M3. It
also may make it easier to implement these designs in new cryptographic
hardware.

A large prime field is implemented internally with digits or “limbs” of
an architecture-dependent size. For example, a 64-bit machine could use
either a full 64 bits per limb, or drop to e.g. 60 bits for improved carry
handling. Either way, the relatively dense packing of limbs makes storage
of elements more memory-efficient, offsetting the disadvantage of out-of-
place multiplication. It also means that these designs can take advantage
of existing cryptographic hardware and software libraries, which typically

support multi-precision arithmetic.

Powers of 2 Making = or ¢ a power of 2 makes it easier to convert to
and from wire formats, and simplifies reconciliation. It also simplifies uni-
form sampling from the ring, which meaningfully reduces runtime. For a
pseudo-Mersenne number, making x a power of 2 is the logical choice. For
polynomial rings, NTRU sets ¢ to a power of 2. But most systems instead
use a prime ¢, either to avoid subrings or to leverage fast NTT-based mul-

tiplication [2, 3].

Error amplification Cyclotomic rings tend to have smaller error ampli-
fication than other rings. This results in slightly better performance and
security. This advantage is not shared by non-cyclotomic polynomial rings,

nor by our pseudo-Mersenne fields.

Division Division in a polynomial ring is faster than in a large prime-order
field, especially if P(x) splits over the base field. Division is used in NTRU-
like protocols [15, 4] but not in variants of the Ding [17] and Peikert [22]

protocols. We are proposing a Ding-like protocol, so we don’t need division.

Summary Overall, we believe that pseudo-Mersenne rings are about as
suitable for this task as polynomial rings. But these rings have received less
attention for lattice problems. We are proposing THREEBEARS as a step to

correcting this gap.

2.4 Modules

It is most convenient to exchange keys whose bit length is equal to the
dimension of the ring. Post-quantum systems must contend with Grover’s
algorithm [11], so a 256-bit key is appropriate for high-security systems.
Accordingly, we have chosen rings with dimension slightly more than 256.
However, this is too small a dimension to effectively resist lattice reduction
algorithms such as BKZ [27, 8]; for this, it seems that dimension 500-1000
is required. We address this problem by using the vector space R? for some

small dimension d. In our recommended parameters, d is between 1 and 4.

2.5 Error distribution

We will make our error distribution on the ring by applying a simple distri-
bution v,2 to each coordinate. When o2 < 2, let

—1 with probability o2 /2
Vy2 1= 0 with probability 1 — o2
+1 with probability o2/2
When 02 = k/2" < 1/2, our 1,2 can be sampled as follows:
riy & [0,2")
g LrHR/2T 4 (- k)2
When o2 > 2, instead let

Vo2 = P12 + Vo212

6

In both cases, 1/,2 has mean 0 and variance o2.

Over the module, we will use the error distribution

deg(P)—1 d=1
Xo2 1= Z € € R? where ¢ ; ¢ b, independently
i=0 =0

That is, we will apply ¥,2 independently to each limb over the ring, inde-
pendently for each of the d ring elements that make up a module element.

[[TODO: Shaped noise? eg less noise at the 1sb and msb, more
in the middle? Noise that affects more than one coefficient at

once? Gaussian noise??? Need Hart’s expertise.]]

2.6 Clarifier

For non-cyclotomic rings, it turns out that multiplying two samples of the
error distribution produces a larger combined error than necessary. We will
mitigate this by applying a clarifier.

Let clar € R* be a value which minimizes the variance of the coefficients
of

clar - X; - X2

If R = 7/(¢?—¢—1)Z for some integer ¢, the optimal clarifier is 1/¢ = ¢—1.
That is, when R = Z /(23120 — 21560 _ 1)7Z we set clar = 21560 — 1. Likewise,
for R = 7/(22160 — 21080 _)7 we set clar = 21080 — 1.

2.7 Uniform distribution from seed

We will also need to sample almost-uniformly from matrices in R**¢ with a
seed string s € {0,1}*. Let

Uy {0,1}* x [0,d)> = R
be a function of a seed s and small indices ¢, 7. Then

Ui(s,d) ... U(s,0,d—1)
U(s) := : : c Rixd
U(s,d—1,0) ... U(s,d—1,d—1)

Concretely, a conservative choice is
Ui(s,1,7) := decode(SHAKE256(s||[d, 7, j|; length = logy N))
On platforms that accelerate AES in hardware, a faster choice is
Ui(s,i,7) := decode(AES256-CTR(s; nonce; pt))
where nonce = [d, i, 4,0, ...,0] and pt = logy N bits of zeros
For lightweight protocols, SHAKE256 can be replaced with STROBE [13]’s
PRF operation.

3 Key exchange protocol

Pseudo-Mersenne rings are suitable for most of the same protocols that
polynomial rings are used for. As a start, we will describe a Ding-like key

exchange protocol [17], as shown in Figure 1.

Alice Bob

s & (0,1}

a <— Xqg2
€q < Xo2
A« U(s)-a+eq (5, A)
_—
b+ X2
€p < Xo2
B« U(s)Tb+ e
Cp«clar-b' - A
(B, h) (kbv h) <~ I'GC(Cb)
- 7

C,+clar-a' -B

(kg -) < rec(Cy + use(h))

Figure 1: Ding-like key exchange protocol

3.1 Alice’s message

Suppose Alice and Bob want to compute a shared secret. First Alice chooses
a random seed s & {0,1}2%6 and then chooses a <+ X2 and €, < X,2. Alice

sends to Bob the values

(s, A:=U(s) -a+¢€,)

3.2 Bob’s message and shared secret

Bob chooses his own secrets b < x,2 and €, < X2, and computes
B = U(S)T'b—l-ﬁb and Cp:=clar-b' - A

Bob computes rec(C}) as follows. He writes C}, as

deg(P)—1

Cbz Z Ci~$i

1=0

and set (K3); to the top bit of ¢; (with significance z/2), and h; to its
second-top bit (with significance z/4). Bob’s copy of the shared secret is
then K := [[(K3)s]], and his reconciliation value is h := [[h]].

In practice we will truncate! the help and key to a convenient length,
either 256 bits or 256 plus error correction values (see Section 4).

Bob sends (B, h) to Alice and outputs the key k.

3.3 Alice’s shared secret

Alice likewise computes

C,:=a'-B
She expands the help value to
deg(P)—1
1-2-h;
use(h) = ; —s 2t

!Because the middle coefficients have higher error probabilities than the outside ones,

it may be beneficial to remove those coefficients first.

She computes
(K, hq) := rec(Cy + use(h))

just as Bob did. She throws away h, and outputs the key K,.
Alice’s key K, agrees with Bob’s key K} with high probability. See
Appendix C for correctness criteria, and Appendix D for an analysis of the

failure probability.

4 Forward error correction

As with any LWE-based cryptosystem, it is easy to trade between failure
probability, dimension and security. We chose parameters that put the fail-
ure probability in an appropriate range for key exchange, around 2% for
BABYBEAR?. For CCA-secure encryption, this failure rate is not acceptable,
because an attacker may learn information about the private key every time
there is a decryption error. To fix this, we follow Saarinen’s tack of using
error correcting codes for forward error correction (FEC) [26, 25].

We use a Melas-style BCH(511,493,5) code [?], which can correct 2
errors in up to 511 bits at the cost of 18 bits of overhead. Since the error
correction is sent in the clear, it gives 18 bits of information about the key,
so the key must be 18 bytes longer. For simplicity, we round both of these
overheads up to 3 bytes.

We describe the implementation of this Melas code in more detail in
Appendix B. Since our larger N gives a 312-bit key, it has room for up
to 56 bits of error correction. A larger BCH code would certainly work,
but might be overly complex, and would gain little in security. A code
that supports soft decoding would also be an interesting choice. As far as
we know, it is an open problem to optimize the error correction for LWE
systems.

We analyzed the effect of forward error correction on failure probability

for both key exchange and encryption. See Appendix D for details.

2A failure probability of 1075 per year is more than 2752 per millisecond.

10

5 CCA-secure encryption

[[TODO: should we derive bigger keys to prevent a quantum time-
data tradeoff attack???]]

In the (quantum) random oracle model, we can convert this key exchange
into a CCA-secure public-key encryption algorithm by using a variant of the
Targhi-Unruh conversion [30]. We will need to create algorithms Keygen,
Encrypt and Decrypt. To do this, we define an algorithm x,2(k) that
samples x,2 from a seed k using a random oracle hash function H.[[TODO:
come back to that]]

Keygen To generate a keypair, Alice chooses a random 256-bit private

key « uniformly at random. She computes

s « H(a,0): 256 bits
a « XU2(H(a>1))
€a — Xo2(H(,2))
A () a+ €
Alice’s public key is then
pk, = (s, 4)

Encrypt To encrypt a message m with Alice’s public key, Bob first chooses

a random 256-bit key S uniformly at random. He computes
5 e H(pka7 137 0)

which is required for the proof of the Targhi-Unruh conversion. He then

proceeds as in the KEM, except that he samples x deterministically from

11

his seed f:

b Xo2(H(pk,, 5,1))
& < Xoz2(H(pk,,5,2))
B « U'(s)-b+e
C, + clar-b'-A
(kp, h) < rec(Ch)

Bob computes forward error correction on the key (which also means that

the key must be slightly longer than for encryption):
f « fec_compute(ky)

He then encrypts his seed S under the derived key so that Alice can verify
that he has been honest:

v < H(ky,0) & B

Finally, he encrypts the message using H (kp, 1) using some CCA-secure

symmetric encryption scheme Enc(key;m):
¢ « Enc(H (kp,1);m)
The ciphertext is then

(B7h7f7776)c)

Decrypt To decrypt a ciphertext (B, h, f,~,d,c), Alice first recomputes
her public key and a. She then computes

+ clar-a'-B
+ rec(C, + use(h))
k, + fec,correct(/;?a, f)
-

H(kq,0) &~y

12

Alice then recomputes (B, h, f,v,0) using Encrypt to make sure that Bob
encrypted properly; if the result is different, she rejects the message. Finally,

she recovers the message as
m <— Enc(H (kq, 1);¢)

[[TODO: Analysis. Do we need longer keys? Figure out the right
place(s) to hash pka.]]

5.1 Recommended and toy parameters

We chose three recommended sets of parameters: BABYBEAR, MAMABEAR
and PAPABEAR. These are designed with estimated security of 128, 192
and 256 bits, respectively, against known quantum attacks; we expect this
to drop as more work is done in attacking quantum systems. We also chose
three “toy” sets, GUMMYBEAR, TEDDYBEAR and DROPBEAR, intended to
stimulate cryptanalysis. Our primary recommendation is MAMABEAR. We
compare our parameters to related work in Table 1.

We tuned the variance of the noise in these systems by intervals of 1/32
in order to balance active vs. passive attacks. Once the attacks are better
understood, it may be worth retuning them, perhaps to a finer granularity.

[[TODO: kyber etc? NTRU Prime? Lizard?]] [25]

5.2 Security analysis

We evaluated our system against five different security metrics, and com-
pared to claims in related work.

The first three, labeled “C”, “Q” and “P”, are core SVP hardness against
primal or dual lattice-reduction attacks against the public key. These corre-
spond to NewHope’s core hardness against “known classical”, “known quan-
tum” and “best possible” attacks, and give optimistic (from the attacker’s
point of view) estimates of the difficulty of recovering the private key using
BKZ [27, 8]. We estimated this using NewHope’s BKZ 2.0 parameter es-
timation script [2]. Note that NTRU Prime’s estimates were done using a
more realistic model of BKZ costs, which leads to a higher security estimate.
[[TODO: need Hart’s expertise here]]

13

System Toy? Ref d diotal o? q
BABYBEAR This paper | 2 624 11/32 1024
MAMABEAR This paper | 3 936 7/32 1024
PAPABEAR This paper | 4 1248 5/32 1024
GuMMYBEAR Y This paper | 1 270 1/8 256
TeEDDYBEAR Y This paper | 1 390 1/8 256
DroOPBEAR Y This paper | 2 540 3/32 256
NEwHOPE 2] 1024 8 12289
JARJAR Y 2] 512 12 12289
trunc8 [26] 512 23.6 12289

Hilab [25] 1024 8 12289
NTRUEncrypt [15] 743 ~2/3 2048
NTRU Prime [4] 739 0.28 9829

Table 1: Parameters for THREEBEARS and related work.

The next two, labeled “F” and “G” for Failure and Failure+Grover, are
chosen-ciphertext attacks on encryption with a long-term public/private key
pair. The Failure attack is the effort for a classical attacker to send random
ciphertexts until one fails to decrypt, which will give attacker information
about the private key. We have not analyzed the number of failures required
to recover the key, but instead show the effort required to produce a single
failure.

These attack model are additionally optimistic from the attacker’s point
of view, because they measure effort as work divided by success probability
and do not assign a cost to chosen-ciphertext queries. Per success, there-
fore, the attacks require far in excess of NIST’s recommended 2% chosen
ciphertexts.

The Failure4+Grover attack is the same, but using Grover’s algorithm on
a quantum computer to find chosen ciphertexts with large norm. The clas-
sical version of this attack can be used to reduce the number of decryption
queries, but not the total effort, so it is modeled by Failure alone. Because
the public key is hashed in with the seed for the ciphertext, this attack

still only targets one public/private key pair. This attack is analyzed in

14

lattice security | failure security Message bytes
System C Q P | Bit F G| Pub KEM Enc
BABYBEAR | 142 128 100 | 56 157 146 | 812 812 882
MaMABEAR | 214 194 151 | 86 235 215 | 1202 1202 1272
PAPABEAR | 284 258 201 | 117 315 284 | 1592 1592 1662
GUuMMYBEAR | 51 46 36| 46 117 102 | 302 302 372
TEDDYBEAR | 82 75 58| 36 95 85| 422 422 492
DrorPBEAR | 116 105 82| 42 113 101 | 572 572 642

JARJAR | 131 118 92| 55 - -1 928 1024 -
NEwHOPE | 281 255 199 | 61 - - | 1824 2048 -
trunc8 | 141 131 102 | 13 45 - | 1024 1024 -

Hilab | 281 255 199 | 27 135 -1 1824 2012 2012
NTRUEncrypt | 176 159 125 | 112 112 -1 1022 1022 1022
NTRU Prime | 215 - 128 oo oo 00| 1232 1141 1141

Table 2: Security and message sizes for THREEBEARS and related work.
Security estimates are log base 2 of the conservatively estimated attack
effort. The “bit” column is the estimated — log, probability of a single-bit
failure before error correction — or equivalently, of a failure in key exchange

— and does not represent an attack.

Appendix D.

Of these attacks, we have tuned our parameters for security against “Q”
and Failure+Grover, because these correspond to the hard steps of known
quantum attacks. We are more concerned about passive lattice reduction
attacks than failure attacks, because the failure attacks given here are com-
pletely infeasible with a realistic number of chosen ciphertexts.

The failure attacks have room for improvement. It may be possible to de-
sign a “fuzzy Grover” algorithm that preferentially samples ciphertexts with
a high failure probability, and would outperform a straightforward Grover
attack in this scenario. It may also be possible to create more correlation
between bit failures, which our analysis does not account for. On the other

hand, we expect that a more realistic cost model would greatly increase

15

the nominal attack effort. In any case, we have left a much larger security
margin on the Failure+Grover attack than we would have if it were fully
developed.

Because NTRU Prime is immune to failures, it is also immune to these
failure attacks. We did not attempt to evaluate the Failure+Grover attack
on other systems, but it is probably worth evaluating for Hila5.

The sizes of public keys and KEM messages or ciphertexts is a meaningful
obstacle in deploying post-quantum cryptography, and must be traded off

against security. We therefore compare these metrics as well.

6 Performance

We created a reference implementation of THREEBEARS in C, optimized
for simplicity and memory consumption. The reference code contains no
processor-specific optimizations, but it can take advantage of 64 x 64 — 128-
bit multiplication when the compiler and CPU support them. Our arith-
metic code uses one level of Karatsuba multiplication, because we cribbed
its arithmetic code from Ed448-Goldilocks [12]. More levels would be faster,
but we didn’t bother in the initial implementation since the bottleneck is
actually SHAKE.

We compiled our code with clang-3.8 -0s and ran it on an Intel Core
i3-6100U Skylake CPU at 2.3 GHz. On this processor, it took about 410k
cycles to perform both the client and server side of the key exchange (i.e.
219kcey for each side), including for both Alice and Bob to compute Kyashed-
The multiplications modulo N took about 30% of the compute time, with
most of the balance being SHAKE. The error correction took only a few

thousand cycles.

System | Skylake
BABYBEAR 127k
MAMABEAR 219k
PAPABEAR | 333k

Table 3: Performance in cycles, including error correction.

16

[[TODO: Optimized numbers; ARM; reflect updates in sam-

pling and clarification; consider AES sampler]]

6.1 Intellectual property

The authors are not aware of any patents which apply to this work. Do not
take this as a guarantee that there are no such patents, as cryptography is
a patent minefield and company policy prohibits looking for the mines.
The authors’ institutions intend for THREEBEARS to be an open stan-
dard. [[TODO: Statement from legal about how we won’t patent
it, but (depending what legal says) we might patent DPA coun-

termeasures or something.]]

7 Future work

We plan to formally specify THREEBEARS, or some closely related scheme,
in order to submit it to the NIST post-quantum cryptography project [21].
We also plan to improve the analysis of its security, and possibly to improve
the error correcting code or noise distributions. We welcome the publication

of cryptanalysis, implementations, and systems derived from THREEBEARS.

8 Conclusion

In this paper, we presented THREEBEARS, a relatively simple instantiation
of module LWE based on pseudo-Mersenne numbers. This system provides
an alternative to polynomial rings for ring- and module-LWE instances. It
may be used exchange or public-key encryption, and we hope that it is able

to resist both classical and quantum attack in these settings.

References

[1] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha.

A new public-key cryptosystem via mersenne numbers. Cryptology

17

ePrint Archive, Report 2017/481, 2017. http://eprint.iacr.org/
2017/481.

Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe.
Post-quantum key exchange - a new hope. In USENIX Security 2016,
2016. http://eprint.iacr.org/2015/1092.

Shi Bai, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé.
From NewHope to Kyber, 2017. https://cryptojedi.org/peter/
data/inria-20170411.pdf.

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine van Vredendaal. NTRU prime. Cryptology ePrint Archive,
Report 2016/461, 2016. http://eprint.iacr.org/2016/461.

Marc Beunardeau, Aisling Connolly, Rmi Graud, and David Nac-
cache. On the hardness of the Mersenne low Hamming ratio as-
sumption. Cryptology ePrint Archive, Report 2017/522, 2017. http:
//eprint.iacr.org/2017/522.

Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! practical, quantum-secure key exchange from LWE.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1006-1018, New York, NY,
USA, 2016. ACM.

Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Ste-
bila. Post-quantum key exchange for the TLS protocol from the
ring learning with errors problem. IEEE Security and Privacy, 2015.
http://eprint.iacr.org/2014/599.

Yuanmi Chen and Phong Nguyen. Bkz 2.0: Better lattice security esti-
mates. Advances in Cryptology-ASIACRYPT 2011, pages 1-20, 2011.

18

[9]

[12]

[15]

Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song.
Lizard: Cut off the tail! practical post-quantum public-key encryption
from LWE and LWR. Cryptology ePrint Archive, Report 2016/1126,
2016. http://eprint.iacr.org/2016/1126.

Robert Granger and Andrew Moss. Generalised Mersenne numbers
revisited. Mathematics of Computation, 82(284):2389-2420, 2013.

Lov K Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, pages 212-219. ACM, 1996.

Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology
ePrint Archive, Report 2015/625, 2015. http://eprint.iacr.org/
2015/625.

Mike Hamburg. The STROBE protocol framework. Real World Crypto,
2017. http://eprint.iacr.org/2017/003.

Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman,
William Whyte, and Zhenfei Zhang. Choosing parameters for NTRU-
Encrypt. Cryptology ePrint Archive, Report 2015/708, 2015. http:
//eprint.iacr.org/2015/708.

Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. NTRU: A ring-
based public key cryptosystem. Algorithmic number theory, pages 267—
288, 1998.

Nick Howgrave-Graham, Phong QQ Nguyen, David Pointcheval, John
Proos, Joseph H Silverman, Ari Singer, and William Whyte. The im-
pact of decryption failures on the security of NTRU encryption. In
Annual International Cryptology Conference, pages 226-246. Springer,
2003.

Xiaodong Lin Jintai Ding, Xiang Xie. A simple provably secure key
exchange scheme based on the learning with errors problem. Cryptol-
ogy ePrint Archive, Report 2012/688, 2012. Also published at EURO-
CRYPT 2014. http://eprint.iacr.org/2012/688.

19

18]

[21]

[26]

[27]

A Karabutsa and Yu Ofman. Multiplication of many-digital numbers
by automatic computers. Doklady Akademii Nauk SSSR, 145(2):293,
1962.

Adeline Langlois and Damien Stehle. Worst-case to average-case reduc-
tions for module lattices. Cryptology ePrint Archive, Report 2012/090,
2012. http://eprint.iacr.org/2012/090.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. Journal of the ACM (JACM),
60(6):43, 2013.

Dustin Moody, Lily Chen, and Yi-Kai Liu. Post-quantum
crypto project, 2016. http://csrc.nist.gov/groups/ST/
post-quantum-crypto/.

Chris Peikert. Lattice cryptography for the internet, 2014. http://
eprint.iacr.org/2014/070.

Chris Peikert. How (not) to instantiate ring-lwe. Cryptology ePrint
Archive, Report 2016/351, 2016. http://eprint.iacr.org/2016/351.

Oded Regev. The learning with errors problem. Invited survey in CCC,
page 15, 2010.

Markku-Juhani O. Saarinen. On reliability, reconciliation, and error
correction in ring-lwe encryption. Cryptology ePrint Archive, Report
2017/424, 2017. http://eprint.iacr.org/2017/424.

Markku-Juhani Olavi Saarinen. Ring-LWE ciphertext compression and
error correction: Tools for lightweight post-quantum cryptography. In
Proceedings of the 3rd ACM International Workshop on IoT Privacy,
Trust, and Security, loTPTS ’17, pages 1522, New York, NY, USA,
2017. ACM.

Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Mathe-
matical programming, 66(1-3):181-199, 1994.

20

[28] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303—
332, 1999.

[29] Jerome A. Solinas. Generalized mersenne numbers. Technical report,
Waterloo, 1999.

[30] Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum security
of the Fujisaki-Okamoto and OAEP transforms. Cryptology ePrint
Archive, Report 2015/1210, 2015. http://eprint.iacr.org/2015/
1210.

A Other ring choices
Readers may be curious why we chose this specific ring
R = 7Z/NpearsZe where Npears = 23120 — 21960 1

Certainly some sort of generalized Mersenne number is required to minimize
error amplification, but why this one? We considered rings of a few other
shapes, but ultimately settled on R, as this section will explain.

The most obvious choice would be the integers modulo a Mersenne prime,

= 23217 _ 1 This prime is conveniently equal to 212:268+1 _ 1

such as p3o17 :
which means that clar = 2 would work nicely. However, the error ampli-
fication in this ring is higher than in our R, because after clarifying and
reducing mod ps3o17 some coefficients will be doubled. This increases the
variance they contribute to the failure estimates by a factor of 4, instead of
3/2 for Npears-

A more general alternative is a cyclotomic field of the form Z/®(2)Z for
some k. Such a field will usually have unacceptable error amplification, but
we can lift to Z/(2¥ +1)Z by choosing a clarifier divisible by (2% £1)/®(2).
For example, ®2.607.13(2) works [[TODO: with clarifier...]]. We did not
see an appreciable gain in this approach, though the resulting system is at

least mathematically interesting.

21

A final possibility is a hybrid approach, where instead of (Z/qZ)[x]/P(x)
or Z/P(k)Z we choose a ring of the form

(Z/P(k)Z) [z] / (Q(k,z))

In other words, we can build a polynomial ring on top of a pseudo-Mersenne
field, with multiple coefficients packed into each field element. While this
construction gives us many choices, it is also more complex. Since the main
goal of THREEBEARS is to provide a clean alternative to polynomial rings,
this construction wouldn’t be as interesting to analyze.

Within Solinas primes, golden-ratio ones such as Npears seem to provide
the smallest error amplification and the widest selection of implementation
choices. This is why we chose a golden-ratio Solinas prime over other primes
such as 212256 _ 212103 _ 1 Within golden-ratio Solinas primes, our choice
was driven by need for a digit size of at least 20 with a degree at least
256 + 18 (for error correction); or at least 2'2 with degree at least 256 (with
no error correction).

Using error correction leads to smaller messages and better performance
at a given security level. However, if someone wanted to use a variant
THREEBEARS without error correction, the best approach would probably
be to use x = 2'2 and P = 2260 — 2130 _ 1. This gives the same N, but since
noise is smaller and the degree of P is smaller, we need a higher d for the

same security level.

B Implementation of the Melas code

Our Melas code is fairly straightforward. We treat the data to be error-
corrected as a polynomial in a formal variable ¢ over GF'(2), and reduce it
modulo the primitive polynomials (Y + ¢34+ 1,#° + t* + 1) by rotating and
xoring. This gives two 9-bit correction values, which we concatenate to form
a 3-byte FEC value which we send with Bob’s flow (the ciphertext). This

code is given in Listing 1.

typedef unsigned gf;

22

static gf mul_t_n(gf x, unsigned n, gf F) {
// Return zxt"n mod [F = 0x221 or 0z211]
for (; n>4; n—=4) x = (x<<4) ~ (x>>b) * F;
return (x<<n) °~ (x>>(9-n)) * F;

gf melas_compute (const u8 xdata, unsigned len) {
gf r1=0, r2=0;
for (unsigned i=0; i<len; i++) {
rl = mul t.n(rl,8,0x221) ° data[i];
r2 = mul_t_n(r2,8,0x211) ~ data[i];

}

return rl | r2<<9;

Listing 1: Code to compute Melas FEC

To decode, we calculate a syndrome (s1,5_1) by xoring the given FEC
with the calculated one, and let s_; := bit-reverse($_1). We will then work
modulo only the polynomial 7+ + 1. Let’s assume for now that there are

two errors at position e; and es, and let

E1 = tel,EQ = t62

We have
51 = tr+t2=F+ Ey
sS_1 = 8. (t_el + t_eQ) = tS/El + t8/E2
= 8. (B + E»)/(F; - E)
so that
§9 = ts . 81/8_1 = E1 . E2
Thus

Qu) :==u? +s1-u+tS s1/5.1=0

23

has roots at u = E; and u = Es, and we may solve it easily using a half-trace
computation. We may then repeatedly multiply E; and E, by ¢ modulo
t? + 5 + 1 until it has exactly one bit set; this bit is the error.

Conveniently, if there is only one error, a straightforward implementation
of the above procedure gives F5 = 0. Likewise if there are no errors, it gives
E1 = E5 = 0. In either case, no modification is required to correct up to 2
errors.

The code to correct an error is listed in Figure 2. The authors are
relatively inexperienced in error correcting codes, so this could probably be

improved upon.

static gf mul(gf a, gf b) { // mod 0z221
gf r = 0;
for (unsigned i=0; i<9; i++) {
r "= (b>>i&l)xa;
a = mul_t_n(a,l,0x221);

}

return r;

static gf reverse_bits_9(gf b) {
b = (b&0x92) | (b>>2 & 0x49) | ((b&0x49)<<2);
return (b&0x38) | (b>>6 & 0x7) | ((b&0x7)<<6);

void melas_correct (u8 xdata, unsigned len, gf fec) {
unsigned i,j;
gf syndrome = fec ~ melas_compute(data,len);
gf a = syndrome & O0x1FF, b = syndrome >> 9;

gf r = mul(a,reverse_bits_9(b)), x=r, s=0;

// Compute s = half_trace(t"8/x)

for (i=0; i<7; i++) r = mul(mul(r,r),x);

const u8 ht[9]={36,251,244,16,164,251,218,60,112};

24

for (i=0; i<9; i++) s "= ((r>>1)&1)*xht[i];

a = mul_t_-n(a,511—8xlen F1);
s = mul(a,s<<1);

for (j=0; j<2; j++, s"=a) {
for (i=0, r=s; i<len; i++) {
r = mul_t.n(r,8,F1);
u32 mask = ((u32)(r & (r—1))—1)>>9;
data[i] "= r & mask;

Listing 2: Code to correct Melas FEC

Since we now only get a decryption error with at least 3 errors, this tech-
nique roughly cubes the probability of decryption failure [[TODO: more
precise]]. We note that a stronger BCH code could correct more errors,
but this would be slower and would take more work to implement. It may

be worth using a larger code in the future to strengthen our parameters.

C Correctness

Let
deg(P)—1

Z e;-w :=C,:=clar-a' -B
i=0

and
deg(P)—1

Z ¢i-wi=Cy:=clar-b' - A
i=0

25

Then if e; — ¢; € (—x/8,2/8) mod z, the two parties will agree on a secret

key. This is because modulo z, we have

ci = (Kp)i-x/24h; -x/4+1]0,2/4)
e; = di+h;-x/4—x/8+ carry
= (Ka)i-z/24[0,2/2) + h; - x/4— /8 + carry

where carry € [—1,1], so that

(e, —c) = ((Kq)i— (Kp)i)-x/24+10,2/2) —[0,2/4) — x/8 + carry
= ((Ka)i — (Kp)i) - 2/2 + [-32/8, 32/8]

Therefore if (K,); # (K3):i, we must have |e; — ¢;| > x/8 as claimed. Now,
E-C=a"-(U(s)'b4+e)=b" - (U(s)a+e)=a'e—b e

If the coefficients of this value are small enough, then decoding will be

correct.

D Failure probability and chosen-ciphertext attacks

Here we quantify the failure probability for key exchange by explicitly com-
puting the distribution of the difference of each coefficient of £ — C. One

way to do this is to rewrite the ring as

Z[p, 2]/ ($* — b — 1, — x8P)/2)

We can then compute a distribution of coefficients in Z[¢]/(¢? — ¢ — 1) and
their products, and raise them to the appropriate powers to compute a
distribution of e¢; — ¢;.

For decryption of public-key-encrypted messages, the failure model is
more complicated for two reasons. First, there is the forward error cor-
rection to consider. We might expect our double-error-correcting code to
cube the failure probability, but in fact there may be correlated failures if
the ciphertext is particularly high-norm. Second, an attacker can search

for such high-norm ciphertexts. Our implementation prevents the attacker

26

from forming the ciphertext dishonestly, but the attacker can try different
random seeds in order to maximize the probability of a failure.
To model this more complex scenario, we note that each coefficient of x

is in {—1,0,1}. However, multiplication can amplify this:

(a+bp)-(c+dp) = ac+bd+ (ad+ be+ bd)g
= ac+bd+ (ad+b(c+d))¢

Suppose ¢ + d¢ is noise in the ciphertext, and a + b¢ is noise in the private
key. Then the coefficients on a,b are in {0, £1,+2}, where +2 occurs only
on b and only if ¢ = d = £1. Since the coefficients of the private key
are independent, we model the ciphertext by the numbers ng,n+1,n492 of
0, +1 and +2 coefficients respectively, corresponding to a particular output
position. For each triple (ng, n41,n42) summing to 2-d-deg(P), we compute

the distributions of the noise in the output and thus the probability
€imsr i = Pr(error|ng, ni1, nio)

of a bit error. Likewise, for each triple we compute the probability

5i7ni1,ni2 = Pf(nm n41, n:t2)

that the ciphertext will produce those coefficients. Note that this latter
probability will be different for each output position.

We can then approximate, for a code that corrects e errors and an at-
tacker who takes p~9 time to find a ciphertext that occurs with probability
p (where g = 1/2 for Grover’s algorithm), the normalized failure probability
a given output position as:

g—1

e+1

Fieg = max (ei,nil,nig '51}7&1,7&2) : E :5i,ni1,ni2
p€[0,1]
e>p €ep

Here the right-hand term is 1, and thus the max is at p = 0, in the classical
case that g = 1 but not in the quantum case that g = 1/2.
Without error correction (e = 0) we can simply sum up Fj., across

coeflicients: .

key length
effort(e = 0,9) = (Z Fi,e,g>
=0

27

However, with error correction, computing separately for each coefficient
will give the wrong answer unless we account for the relationship between
Pr((no,n+1,n+2) in position ¢) and in position j. But from the arithmetic-
geometric means inequality it may be shown that

-1

key length
eﬂort(e,g)z< 3 F>
=0

[[TODO: correlation at least between opposite coefficients]]

There is a further possibility that ciphertexts may cause correlated fail-
ures that break error correction for reasons other than their norms, for
example if they have regularly-spaced large coefficients. This may further
reduce security against failure attacks. We leave analysis of this problem to

future work.

28

