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Abstract

We propose a new post-quantum key exchange algorithm based on

the module learning with errors (mLWE) problem. Our ThreeBears

algorithm is simple and performant, but our main goal is to suggest

mLWE over a pseudo-Mersenne field instead of a polynomial ring. We

also show how to build a public-key encryption system from the key

exchange algorithm.

1 Introduction

All widely-deployed key exchange and public-key encryption algorithms are

threatened by the possibility of a quantum computer powerful enough to run

Shor’s algorithm [28]. Consequently, there is a growing interest in developing

a suite of “post-quantum” algorithms which would resist attack by these

computers [21]. The most common approaches to addressing this threat

rely on the hardness of lattice problems, including variants such as learning

with errors (LWE) [24], ring learning with errors (rLWE) [20], and module

learning with errors (mLWE) [19].

Overall, rLWE-based schemes [15, 14, 2] tend to be faster and have

smaller public keys and ciphertexts than those based on classical LWE [6].
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This is enabled by the extra structure that the ring provides, but there is

a lingering concern that this structure will enable new attacks [23]. This

concern has led to proposals for rings with less structure [4], and for rings to

be replaced with modules when the full ring structure is not necessary [3].

1.1 Our contribution

Here we propose a new cryptosystem based on mLWE, where the underlying

ring is the integers modulo a pseudo-Mersenne number. This opens up a

new set of implementation options, and may have better (or worse!) security

properties than a polynomial ring.

Our cryptosystem is called ThreeBears, because its pseudo-Mersenne

prime has the same shape as the one in Ed448-Goldilocks [12].

There are few systems based on lattices modulo Mersenne and pseudo-

Mersenne numbers. Though previous proposals [1] have met with limited

success [5], we believe that combining pseudo-Mersenne lattices with state-

of-the-art key exchange protocols will at least be worth analyzing.

We also further explore Saarinen’s error correction trick [26, 25]. For

unauthenticated key exchange, we have tuned the parameters for a small

signal-to-noise ratio in order to minimize bandwidth costs and maximize

security. We did this at the cost of key exchange failures, which occur with

probability around 2−56 for our weakest recommendation.

But for public-key encryption, failures may lead to a chosen-ciphertext

attack [16]. While we could use a larger signal-to-noise ratio, we instead

use error-correcting codes. With a code that corrects up to two errors, we

can roughly cube the failure probability. We then estimate the complexity of

attacks against the corrected key, and show that they are in line with security

estimates for lattice attacks. This analysis is mostly independent of the

pseudo-Mersenne lattice aspect of the design, and so may be of independent

interest.

2



2 Ring choice

The choice of ring is one of the most important decisions when designing a

ring-LWE-based system. Here we review polynomial rings, and then exam-

ine our choice, pseudo-Mersenne rings.

2.1 Polynomial rings

Most previous systems use polynomial rings of the form

R := (Z/qZ)[x]/P (x)

for some integer q and monic polynomial P . They also specify one or more

noise distributions χi over R. Typically the noise is defined as

χ :=

deg(P )−1∑
i=0

εix
i where εi ← ψ

where ψ may be a binomial [2], uniform or discrete Gaussian [7] distribution.

Alternatively, the noise may be chosen to have a fixed Hamming weight [4],

or may be a consequence of rounding [9]. In any case, for decryption to

work we will need χi ·χj to be “small” over R, i.e. for its coefficients to have

standard deviation much less than q. This condition usually implies that

the polynomial P is sparse with small coefficients.

2.2 Rings modulo pseudo-Mersenne numbers

Here we take a slightly different approach. We choose an integer x and a

polynomial P , and set

N := P (x) and R := Z/NZ

That is, R is the ring of integers modulo a Mersenne number or pseudo-

Mersenne number N . The integer x plays the role of both the modulus q

and the formal variable x in a polynomial ring. We can then choose the

noise in the analogous way:

χ :=

deg(P )−1∑
i=0

εix
i where εi ← ψ
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or we can use a fixed Hamming weight or even rounding. Again, limiting

errors generally requires P to be sparse with small coefficients.

For our main recommendations, we let x = 210 and P = x312− x156− 1,

resulting in the “golden Solinas” pseudo-Mersenne prime

N = 23120 − 21560 − 1

For some of our toy instances, we instead let x = 28 and P = x270−x135−1,

resulting in N = 22160 − 21080 − 1. Both of these N values are prime, which

rules out attacks based on subrings. For an analysis of some other options,

see Appendix A.

In a break with tradition, deg(P ) is neither prime nor a prime power. In

cyclotomic fields, using a prime or prime power mitigates weaknesses based

on subrings of R. But when N is prime there are no subrings of Z/NZ.

2.3 Pros and cons of pseduo-Mersenne rings

Both polynomial rings and pseudo-Mersenne rings have their advantages.

Here is a brief comparison.

Security The security of polynomial rings has been considered for longer,

which is reassuring. However, pseudo-Mersenne rings have a different ring

structure, and when N is prime they have no subrings. This may improve

or weaken security.

Multiplication algorithms Some polynomial rings support fast multi-

plication based on the number-theoretic transform (NTT). Since the NTT

can be performed in place, these rings have an intrinsic memory savings.

Elements can even be sampled and sent in the NTT domain [2], though

this constrains implementations and complicates the specification. Other

systems avoid the extra structure required to support the NTT — that P is

cyclotomic and splits mod q — out of concerns that it may lead to security

problems [4].

Pseudo-Mersenne numbers support multiplication algorithms such as

Karatsuba-Ofman [18] or Granger-Moss [10], as well as Solinas reduction [29].
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These algorithms are faster than näıve “schoolbook” algorithm, but they are

not as efficient as NTT-based multiplication. Usually big-number multipli-

cation cannot be performed in-place.

Processor and hardware support Polynomial rings typically have 10-

to 14-bit q, so they do arithmetic with 16-bit shorts and do not require

multi-precision arithmetic. This means they work well both on tiny ma-

chines with tiny registers and on large machines with vector units. The

small coefficients make it easier to mitigate problems with multi-precision

arithmetic encountered on (for example) the ARM Cortex-M0 and M3. It

also may make it easier to implement these designs in new cryptographic

hardware.

A large prime field is implemented internally with digits or “limbs” of

an architecture-dependent size. For example, a 64-bit machine could use

either a full 64 bits per limb, or drop to e.g. 60 bits for improved carry

handling. Either way, the relatively dense packing of limbs makes storage

of elements more memory-efficient, offsetting the disadvantage of out-of-

place multiplication. It also means that these designs can take advantage

of existing cryptographic hardware and software libraries, which typically

support multi-precision arithmetic.

Powers of 2 Making x or q a power of 2 makes it easier to convert to

and from wire formats, and simplifies reconciliation. It also simplifies uni-

form sampling from the ring, which meaningfully reduces runtime. For a

pseudo-Mersenne number, making x a power of 2 is the logical choice. For

polynomial rings, NTRU sets q to a power of 2. But most systems instead

use a prime q, either to avoid subrings or to leverage fast NTT-based mul-

tiplication [2, 3].

Error amplification Cyclotomic rings tend to have smaller error ampli-

fication than other rings. This results in slightly better performance and

security. This advantage is not shared by non-cyclotomic polynomial rings,

nor by our pseudo-Mersenne fields.
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Division Division in a polynomial ring is faster than in a large prime-order

field, especially if P (x) splits over the base field. Division is used in NTRU-

like protocols [15, 4] but not in variants of the Ding [17] and Peikert [22]

protocols. We are proposing a Ding-like protocol, so we don’t need division.

Summary Overall, we believe that pseudo-Mersenne rings are about as

suitable for this task as polynomial rings. But these rings have received less

attention for lattice problems. We are proposing ThreeBears as a step to

correcting this gap.

2.4 Modules

It is most convenient to exchange keys whose bit length is equal to the

dimension of the ring. Post-quantum systems must contend with Grover’s

algorithm [11], so a 256-bit key is appropriate for high-security systems.

Accordingly, we have chosen rings with dimension slightly more than 256.

However, this is too small a dimension to effectively resist lattice reduction

algorithms such as BKZ [27, 8]; for this, it seems that dimension 500-1000

is required. We address this problem by using the vector space Rd for some

small dimension d. In our recommended parameters, d is between 1 and 4.

2.5 Error distribution

We will make our error distribution on the ring by applying a simple distri-

bution ψσ2 to each coordinate. When σ2 ≤ 2, let

ψσ2 :=


−1 with probability σ2/2

0 with probability 1− σ2

+1 with probability σ2/2

When σ2 = k/2n ≤ 1/2, our ψσ2 can be sampled as follows:

ri,j
R← [0, 2n+1)

εi,j ← b(r + k)/2n+1c + b(r − k)/2n+1c

When σ2 > 2, instead let

ψσ2 := ψ1/2 + ψσ2−1/2
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In both cases, ψσ2 has mean 0 and variance σ2.

Over the module, we will use the error distribution

χσ2 :=

deg(P )−1∑
i=0

εi,j · xi
d−1
j=0

∈ Rd where εi,j ← ψσ2 independently

That is, we will apply ψσ2 independently to each limb over the ring, inde-

pendently for each of the d ring elements that make up a module element.

[[TODO: Shaped noise? eg less noise at the lsb and msb, more

in the middle? Noise that affects more than one coefficient at

once? Gaussian noise??? Need Hart’s expertise.]]

2.6 Clarifier

For non-cyclotomic rings, it turns out that multiplying two samples of the

error distribution produces a larger combined error than necessary. We will

mitigate this by applying a clarifier.

Let clar ∈ R∗ be a value which minimizes the variance of the coefficients

of

clar · χ>σ2 · χσ2

If R = Z/(φ2−φ−1)Z for some integer φ, the optimal clarifier is 1/φ = φ−1.

That is, when R = Z/(23120− 21560− 1)Z, we set clar = 21560− 1. Likewise,

for R = Z/(22160 − 21080 − 1)Z, we set clar = 21080 − 1.

2.7 Uniform distribution from seed

We will also need to sample almost-uniformly from matrices in Rd×d with a

seed string s ∈ {0, 1}`. Let

U1 :: {0, 1}` × [0, d)2 → R

be a function of a seed s and small indices i, j. Then

U(s) :=


U1(s, d) . . . U(s, 0, d− 1)

...
. . .

...

U(s, d− 1, 0) . . . U(s, d− 1, d− 1)

 ∈ Rd×d
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Concretely, a conservative choice is

U1(s, i, j) := decode(SHAKE256(s||[d, i, j]; length = log2N))

On platforms that accelerate AES in hardware, a faster choice is

U1(s, i, j) := decode(AES256-CTR(s; nonce; pt))

where nonce = [d, i, j, 0, . . . , 0] and pt = log2N bits of zeros

For lightweight protocols, SHAKE256 can be replaced with Strobe [13]’s

PRF operation.

3 Key exchange protocol

Pseudo-Mersenne rings are suitable for most of the same protocols that

polynomial rings are used for. As a start, we will describe a Ding-like key

exchange protocol [17], as shown in Figure 1.

Alice Bob

(s,A)

s
R← {0, 1}256

a← χσ2

εa ← χσ2

A← U(s) · a+ εa

(B, h)

b← χσ2

εb ← χσ2

B ← U(s)>b+ εb

Cb ← clar · b> ·A

(kb, h)← rec(Cb)

Ca ← clar · a> ·B

(ka, )← rec(Ca + use(h))

Figure 1: Ding-like key exchange protocol
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3.1 Alice’s message

Suppose Alice and Bob want to compute a shared secret. First Alice chooses

a random seed s
R← {0, 1}256, and then chooses a← χσ2 and εa ← χσ2 . Alice

sends to Bob the values

(s, A := U(s) · a+ εa)

3.2 Bob’s message and shared secret

Bob chooses his own secrets b← χσ2 and εb ← χσ2 , and computes

B := U(s)> · b+ εb and Cb := clar · b> ·A

Bob computes rec(Cb) as follows. He writes Cb as

Cb =

deg(P )−1∑
i=0

ci · xi

and set (Kb)i to the top bit of ci (with significance x/2), and hi to its

second-top bit (with significance x/4). Bob’s copy of the shared secret is

then Kb := [[(Kb)i]], and his reconciliation value is h := [[hi]].

In practice we will truncate1 the help and key to a convenient length,

either 256 bits or 256 plus error correction values (see Section 4).

Bob sends (B, h) to Alice and outputs the key kb.

3.3 Alice’s shared secret

Alice likewise computes

Ca := a> ·B

She expands the help value to

use(h) :=

deg(P )−1∑
i=0

1− 2 · hi
8

· xi+1

1Because the middle coefficients have higher error probabilities than the outside ones,

it may be beneficial to remove those coefficients first.
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She computes

(Ka, ha) := rec(Ca + use(h))

just as Bob did. She throws away ha and outputs the key Ka.

Alice’s key Ka agrees with Bob’s key Kb with high probability. See

Appendix C for correctness criteria, and Appendix D for an analysis of the

failure probability.

4 Forward error correction

As with any LWE-based cryptosystem, it is easy to trade between failure

probability, dimension and security. We chose parameters that put the fail-

ure probability in an appropriate range for key exchange, around 2−56 for

BabyBear2. For CCA-secure encryption, this failure rate is not acceptable,

because an attacker may learn information about the private key every time

there is a decryption error. To fix this, we follow Saarinen’s tack of using

error correcting codes for forward error correction (FEC) [26, 25].

We use a Melas-style BCH(511, 493, 5) code [?], which can correct 2

errors in up to 511 bits at the cost of 18 bits of overhead. Since the error

correction is sent in the clear, it gives 18 bits of information about the key,

so the key must be 18 bytes longer. For simplicity, we round both of these

overheads up to 3 bytes.

We describe the implementation of this Melas code in more detail in

Appendix B. Since our larger N gives a 312-bit key, it has room for up

to 56 bits of error correction. A larger BCH code would certainly work,

but might be overly complex, and would gain little in security. A code

that supports soft decoding would also be an interesting choice. As far as

we know, it is an open problem to optimize the error correction for LWE

systems.

We analyzed the effect of forward error correction on failure probability

for both key exchange and encryption. See Appendix D for details.

2A failure probability of 10−5 per year is more than 2−52 per millisecond.

10



5 CCA-secure encryption

[[TODO: should we derive bigger keys to prevent a quantum time-

data tradeoff attack???]]

In the (quantum) random oracle model, we can convert this key exchange

into a CCA-secure public-key encryption algorithm by using a variant of the

Targhi-Unruh conversion [30]. We will need to create algorithms Keygen,

Encrypt and Decrypt. To do this, we define an algorithm χ̂σ2(k) that

samples χσ2 from a seed k using a random oracle hash function H.[[TODO:

come back to that]]

Keygen To generate a keypair, Alice chooses a random 256-bit private

key α uniformly at random. She computes

s ← H(α, 0) : 256 bits

a ← χ̂σ2(H(α, 1))

εa ← χ̂σ2(H(α, 2))

A ← U(s) · a+ εa

Alice’s public key is then

pka := (s,A)

Encrypt To encrypt a message m with Alice’s public key, Bob first chooses

a random 256-bit key β uniformly at random. He computes

δ ← H(pka, β, 0)

which is required for the proof of the Targhi-Unruh conversion. He then

proceeds as in the KEM, except that he samples χ deterministically from
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his seed β:

b ← χ̂σ2(H(pka, β, 1))

εb ← χ̂σ2(H(pka, β, 2))

B ← U>(s) · b+ εb

Cb ← clar · b> ·A

(kb, h) ← rec(Cb)

Bob computes forward error correction on the key (which also means that

the key must be slightly longer than for encryption):

f ← fec compute(kb)

He then encrypts his seed β under the derived key so that Alice can verify

that he has been honest:

γ ← H(kb, 0)⊕ β

Finally, he encrypts the message using H(kb, 1) using some CCA-secure

symmetric encryption scheme Enc(key;m):

c← Enc(H(kb, 1);m)

The ciphertext is then

(B, h, f, γ, δ, c)

Decrypt To decrypt a ciphertext (B, h, f, γ, δ, c), Alice first recomputes

her public key and a. She then computes

Ca ← clar · a> ·B

(k̃a, ) ← rec(Ca + use(h))

ka ← fec correct(k̃a, f)

β ← H(ka, 0)⊕ γ
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Alice then recomputes (B, h, f, γ, δ) using Encrypt to make sure that Bob

encrypted properly; if the result is different, she rejects the message. Finally,

she recovers the message as

m← Enc(H(ka, 1); c)

[[TODO: Analysis. Do we need longer keys? Figure out the right

place(s) to hash pka.]]

5.1 Recommended and toy parameters

We chose three recommended sets of parameters: BabyBear, MamaBear

and PapaBear. These are designed with estimated security of 128, 192

and 256 bits, respectively, against known quantum attacks; we expect this

to drop as more work is done in attacking quantum systems. We also chose

three “toy” sets, GummyBear, TeddyBear and DropBear, intended to

stimulate cryptanalysis. Our primary recommendation is MamaBear. We

compare our parameters to related work in Table 1.

We tuned the variance of the noise in these systems by intervals of 1/32

in order to balance active vs. passive attacks. Once the attacks are better

understood, it may be worth retuning them, perhaps to a finer granularity.

[[TODO: kyber etc? NTRU Prime? Lizard?]] [25]

5.2 Security analysis

We evaluated our system against five different security metrics, and com-

pared to claims in related work.

The first three, labeled “C”, “Q” and “P”, are core SVP hardness against

primal or dual lattice-reduction attacks against the public key. These corre-

spond to NewHope’s core hardness against “known classical”, “known quan-

tum” and “best possible” attacks, and give optimistic (from the attacker’s

point of view) estimates of the difficulty of recovering the private key using

BKZ [27, 8]. We estimated this using NewHope’s BKZ 2.0 parameter es-

timation script [2]. Note that NTRU Prime’s estimates were done using a

more realistic model of BKZ costs, which leads to a higher security estimate.

[[TODO: need Hart’s expertise here]]
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System Toy? Ref d dtotal σ2 q

BabyBear This paper 2 624 11/32 1024

MamaBear This paper 3 936 7/32 1024

PapaBear This paper 4 1248 5/32 1024

GummyBear Y This paper 1 270 1/8 256

TeddyBear Y This paper 1 390 1/8 256

DropBear Y This paper 2 540 3/32 256

NewHope [2] 1024 8 12289

JarJar Y [2] 512 12 12289

trunc8 [26] 512 23.6 12289

Hila5 [25] 1024 8 12289

NTRUEncrypt [15] 743 ≈ 2/3 2048

NTRU Prime [4] 739 0.28 9829

Table 1: Parameters for ThreeBears and related work.

The next two, labeled “F” and “G” for Failure and Failure+Grover, are

chosen-ciphertext attacks on encryption with a long-term public/private key

pair. The Failure attack is the effort for a classical attacker to send random

ciphertexts until one fails to decrypt, which will give attacker information

about the private key. We have not analyzed the number of failures required

to recover the key, but instead show the effort required to produce a single

failure.

These attack model are additionally optimistic from the attacker’s point

of view, because they measure effort as work divided by success probability

and do not assign a cost to chosen-ciphertext queries. Per success, there-

fore, the attacks require far in excess of NIST’s recommended 264 chosen

ciphertexts.

The Failure+Grover attack is the same, but using Grover’s algorithm on

a quantum computer to find chosen ciphertexts with large norm. The clas-

sical version of this attack can be used to reduce the number of decryption

queries, but not the total effort, so it is modeled by Failure alone. Because

the public key is hashed in with the seed for the ciphertext, this attack

still only targets one public/private key pair. This attack is analyzed in
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lattice security failure security Message bytes

System C Q P Bit F G Pub KEM Enc

BabyBear 142 128 100 56 157 146 812 812 882

MamaBear 214 194 151 86 235 215 1202 1202 1272

PapaBear 284 258 201 117 315 284 1592 1592 1662

GummyBear 51 46 36 46 117 102 302 302 372

TeddyBear 82 75 58 36 95 85 422 422 492

DropBear 116 105 82 42 113 101 572 572 642

JarJar 131 118 92 55 - - 928 1024 -

NewHope 281 255 199 61 - - 1824 2048 -

trunc8 141 131 102 13 45 - 1024 1024 -

Hila5 281 255 199 27 135 - 1824 2012 2012

NTRUEncrypt 176 159 125 112 112 - 1022 1022 1022

NTRU Prime 215 - 128 ∞ ∞ ∞ 1232 1141 1141

Table 2: Security and message sizes for ThreeBears and related work.

Security estimates are log base 2 of the conservatively estimated attack

effort. The “bit” column is the estimated − log2 probability of a single-bit

failure before error correction — or equivalently, of a failure in key exchange

— and does not represent an attack.

Appendix D.

Of these attacks, we have tuned our parameters for security against “Q”

and Failure+Grover, because these correspond to the hard steps of known

quantum attacks. We are more concerned about passive lattice reduction

attacks than failure attacks, because the failure attacks given here are com-

pletely infeasible with a realistic number of chosen ciphertexts.

The failure attacks have room for improvement. It may be possible to de-

sign a “fuzzy Grover” algorithm that preferentially samples ciphertexts with

a high failure probability, and would outperform a straightforward Grover

attack in this scenario. It may also be possible to create more correlation

between bit failures, which our analysis does not account for. On the other

hand, we expect that a more realistic cost model would greatly increase
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the nominal attack effort. In any case, we have left a much larger security

margin on the Failure+Grover attack than we would have if it were fully

developed.

Because NTRU Prime is immune to failures, it is also immune to these

failure attacks. We did not attempt to evaluate the Failure+Grover attack

on other systems, but it is probably worth evaluating for Hila5.

The sizes of public keys and KEM messages or ciphertexts is a meaningful

obstacle in deploying post-quantum cryptography, and must be traded off

against security. We therefore compare these metrics as well.

6 Performance

We created a reference implementation of ThreeBears in C, optimized

for simplicity and memory consumption. The reference code contains no

processor-specific optimizations, but it can take advantage of 64×64→ 128-

bit multiplication when the compiler and CPU support them. Our arith-

metic code uses one level of Karatsuba multiplication, because we cribbed

its arithmetic code from Ed448-Goldilocks [12]. More levels would be faster,

but we didn’t bother in the initial implementation since the bottleneck is

actually SHAKE.

We compiled our code with clang-3.8 -Os and ran it on an Intel Core

i3-6100U Skylake CPU at 2.3 GHz. On this processor, it took about 410k

cycles to perform both the client and server side of the key exchange (i.e.

219kcy for each side), including for both Alice and Bob to compute Khashed.

The multiplications modulo N took about 30% of the compute time, with

most of the balance being SHAKE. The error correction took only a few

thousand cycles.

System Skylake

BabyBear 127k

MamaBear 219k

PapaBear 333k

Table 3: Performance in cycles, including error correction.
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[[TODO: Optimized numbers; ARM; reflect updates in sam-

pling and clarification; consider AES sampler]]

6.1 Intellectual property

The authors are not aware of any patents which apply to this work. Do not

take this as a guarantee that there are no such patents, as cryptography is

a patent minefield and company policy prohibits looking for the mines.

The authors’ institutions intend for ThreeBears to be an open stan-

dard. [[TODO: Statement from legal about how we won’t patent

it, but (depending what legal says) we might patent DPA coun-

termeasures or something.]]

7 Future work

We plan to formally specify ThreeBears, or some closely related scheme,

in order to submit it to the NIST post-quantum cryptography project [21].

We also plan to improve the analysis of its security, and possibly to improve

the error correcting code or noise distributions. We welcome the publication

of cryptanalysis, implementations, and systems derived from ThreeBears.

8 Conclusion

In this paper, we presented ThreeBears, a relatively simple instantiation

of module LWE based on pseudo-Mersenne numbers. This system provides

an alternative to polynomial rings for ring- and module-LWE instances. It

may be used exchange or public-key encryption, and we hope that it is able

to resist both classical and quantum attack in these settings.
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A Other ring choices

Readers may be curious why we chose this specific ring

R = Z/NbearsZ where Nbears = 23120 − 21560 − 1

Certainly some sort of generalized Mersenne number is required to minimize

error amplification, but why this one? We considered rings of a few other

shapes, but ultimately settled on R, as this section will explain.

The most obvious choice would be the integers modulo a Mersenne prime,

such as p3217 := 23217− 1. This prime is conveniently equal to 212·268+1− 1,

which means that clar = 2 would work nicely. However, the error ampli-

fication in this ring is higher than in our R, because after clarifying and

reducing mod p3217 some coefficients will be doubled. This increases the

variance they contribute to the failure estimates by a factor of 4, instead of

3/2 for Nbears.

A more general alternative is a cyclotomic field of the form Z/Φk(2)Z for

some k. Such a field will usually have unacceptable error amplification, but

we can lift to Z/(2k±1)Z by choosing a clarifier divisible by (2k±1)/Φk(2).

For example, Φ2·607·13(2) works [[TODO: with clarifier...]]. We did not

see an appreciable gain in this approach, though the resulting system is at

least mathematically interesting.
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A final possibility is a hybrid approach, where instead of (Z/qZ)[x]/P (x)

or Z/P (k)Z we choose a ring of the form

(Z/P (k)Z) [x] / (Q(k, x))

In other words, we can build a polynomial ring on top of a pseudo-Mersenne

field, with multiple coefficients packed into each field element. While this

construction gives us many choices, it is also more complex. Since the main

goal of ThreeBears is to provide a clean alternative to polynomial rings,

this construction wouldn’t be as interesting to analyze.

Within Solinas primes, golden-ratio ones such as Nbears seem to provide

the smallest error amplification and the widest selection of implementation

choices. This is why we chose a golden-ratio Solinas prime over other primes

such as 212·256 − 212·103 − 1. Within golden-ratio Solinas primes, our choice

was driven by need for a digit size of at least 210 with a degree at least

256 + 18 (for error correction); or at least 212 with degree at least 256 (with

no error correction).

Using error correction leads to smaller messages and better performance

at a given security level. However, if someone wanted to use a variant

ThreeBears without error correction, the best approach would probably

be to use x = 212 and P = 2260− 2130− 1. This gives the same N , but since

noise is smaller and the degree of P is smaller, we need a higher d for the

same security level.

B Implementation of the Melas code

Our Melas code is fairly straightforward. We treat the data to be error-

corrected as a polynomial in a formal variable t over GF (2), and reduce it

modulo the primitive polynomials (t9 + t5 + 1, t9 + t4 + 1) by rotating and

xoring. This gives two 9-bit correction values, which we concatenate to form

a 3-byte FEC value which we send with Bob’s flow (the ciphertext). This

code is given in Listing 1.

typedef unsigned g f ;
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stat ic g f mul t n ( g f x , unsigned n , g f F) {
// Return x∗ t ˆn mod [F = 0x221 or 0x211 ]

for ( ; n>4; n−=4) x = (x<<4) ˆ (x>>5) ∗ F;

return (x<<n) ˆ (x>>(9−n ) ) ∗ F;

}

g f melas compute ( const u8 ∗data , unsigned l en ) {
g f r1 =0, r2 =0;

for (unsigned i =0; i<l en ; i++) {
r1 = mul t n ( r1 , 8 , 0 x221 ) ˆ data [ i ] ;

r2 = mul t n ( r2 , 8 , 0 x211 ) ˆ data [ i ] ;

}
return r1 | r2<<9;

}

Listing 1: Code to compute Melas FEC

To decode, we calculate a syndrome (s1, ŝ−1) by xoring the given FEC

with the calculated one, and let s−1 := bit-reverse(ŝ−1). We will then work

modulo only the polynomial t9 + t5 + 1. Let’s assume for now that there are

two errors at position e1 and e2, and let

E1 := te1 , E2 := te2

We have

s1 = te1 + te2 = E1 + E2

s−1 = t8 · (t−e1 + t−e2) = t8/E1 + t8/E2

= t8 · (E1 + E2)/(E1 · E2)

so that

s2 := t8 · s1/s−1 = E1 · E2

Thus

Q(u) := u2 + s1 · u+ t8 · s1/s−1 = 0
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has roots at u = E1 and u = E2, and we may solve it easily using a half-trace

computation. We may then repeatedly multiply E1 and E2 by t8 modulo

t9 + t5 + 1 until it has exactly one bit set; this bit is the error.

Conveniently, if there is only one error, a straightforward implementation

of the above procedure gives E2 = 0. Likewise if there are no errors, it gives

E1 = E2 = 0. In either case, no modification is required to correct up to 2

errors.

The code to correct an error is listed in Figure 2. The authors are

relatively inexperienced in error correcting codes, so this could probably be

improved upon.

stat ic g f mul ( g f a , g f b) { // mod 0x221

g f r = 0 ;

for (unsigned i =0; i <9; i++) {
r ˆ= (b>>i &1)∗a ;

a = mul t n ( a , 1 , 0 x221 ) ;

}
return r ;

}

stat ic g f r e v e r s e b i t s 9 ( g f b) {
b = (b&0x92 ) | (b>>2 & 0x49 ) | ( ( b&0x49)<<2);

return (b&0x38 ) | (b>>6 & 0x7 ) | ( ( b&0x7)<<6);

}

void m e l a s c o r r e c t ( u8 ∗data , unsigned len , g f f e c ) {
unsigned i , j ;

g f syndrome = f e c ˆ melas compute ( data , l en ) ;

g f a = syndrome & 0x1FF , b = syndrome >> 9 ;

g f r = mul ( a , r e v e r s e b i t s 9 (b ) ) , x=r , s =0;

// Compute s = h a l f t r a c e ( t ˆ8/ x )

for ( i =0; i <7; i++) r = mul ( mul ( r , r ) , x ) ;

const u8 ht [9 ]={36 ,251 ,244 ,16 ,164 ,251 ,218 ,60 ,112} ;
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for ( i =0; i <9; i++) s ˆ= ( ( r>>i )&1)∗ht [ i ] ;

a = mul t n ( a ,511−8∗ len , F1 ) ;

s = mul ( a , s<<1);

for ( j =0; j <2; j ++, sˆ=a ) {
for ( i =0, r=s ; i<l en ; i++) {

r = mul t n ( r , 8 , F1 ) ;

u32 mask = ( ( u32 ) ( r & ( r−1))−1)>>9;

data [ i ] ˆ= r & mask ;

}
}

}

Listing 2: Code to correct Melas FEC

Since we now only get a decryption error with at least 3 errors, this tech-

nique roughly cubes the probability of decryption failure [[TODO: more

precise]]. We note that a stronger BCH code could correct more errors,

but this would be slower and would take more work to implement. It may

be worth using a larger code in the future to strengthen our parameters.

C Correctness

Let
deg(P )−1∑

i=0

ei · wi := Ca := clar · a> ·B

and
deg(P )−1∑

i=0

ci · wi := Cb := clar · b> ·A
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Then if ei − ci ∈ (−x/8, x/8) mod x, the two parties will agree on a secret

key. This is because modulo x, we have

ci = (Kb)i · x/2 + hi · x/4 + [0, x/4)

ei = di + hi · x/4− x/8 + carry

= (Ka)i · x/2 + [0, x/2) + hi · x/4− x/8 + carry

where carry ∈ [−1, 1], so that

(ei − ci) = ((Ka)i − (Kb)i) · x/2 + [0, x/2)− [0, x/4)− x/8 + carry

= ((Ka)i − (Kb)i) · x/2 + [−3x/8, 3x/8]

Therefore if (Ka)i 6= (Kb)i, we must have |ei − ci| ≥ x/8 as claimed. Now,

E − C = a> · (U(s)>b+ εb)− b> · (U(s)a+ εa) = a>εb − b>εa

If the coefficients of this value are small enough, then decoding will be

correct.

D Failure probability and chosen-ciphertext attacks

Here we quantify the failure probability for key exchange by explicitly com-

puting the distribution of the difference of each coefficient of E − C. One

way to do this is to rewrite the ring as

Z[φ, x]/(φ2 − φ− 1, φ− xdeg(P )/2)

We can then compute a distribution of coefficients in Z[φ]/(φ2 − φ− 1) and

their products, and raise them to the appropriate powers to compute a

distribution of ei − ci.
For decryption of public-key-encrypted messages, the failure model is

more complicated for two reasons. First, there is the forward error cor-

rection to consider. We might expect our double-error-correcting code to

cube the failure probability, but in fact there may be correlated failures if

the ciphertext is particularly high-norm. Second, an attacker can search

for such high-norm ciphertexts. Our implementation prevents the attacker
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from forming the ciphertext dishonestly, but the attacker can try different

random seeds in order to maximize the probability of a failure.

To model this more complex scenario, we note that each coefficient of χ

is in {−1, 0, 1}. However, multiplication can amplify this:

(a+ bφ) · (c+ dφ) = ac+ bd+ (ad+ bc+ bd)φ

= ac+ bd+ (ad+ b(c+ d))φ

Suppose c+ dφ is noise in the ciphertext, and a+ bφ is noise in the private

key. Then the coefficients on a, b are in {0,±1,±2}, where ±2 occurs only

on b and only if c = d = ±1. Since the coefficients of the private key

are independent, we model the ciphertext by the numbers n0, n±1, n±2 of

0, ±1 and ±2 coefficients respectively, corresponding to a particular output

position. For each triple (n0, n±1, n±2) summing to 2·d·deg(P ), we compute

the distributions of the noise in the output and thus the probability

εi,n±1,n±2 := Pr(error|n0, n±1, n±2)

of a bit error. Likewise, for each triple we compute the probability

δi,n±1,n±2 := Pr(n0, n±1, n±2)

that the ciphertext will produce those coefficients. Note that this latter

probability will be different for each output position.

We can then approximate, for a code that corrects e errors and an at-

tacker who takes p−g time to find a ciphertext that occurs with probability

p (where g = 1/2 for Grover’s algorithm), the normalized failure probability

a given output position as:

Fi,e,g := max
p∈[0,1]

∑
ε≥p

(
εe+1
i,n±1,n±2

· δi,n±1,n±2

)
·

∑
ε≥p

δi,n±1,n±2

g−1

Here the right-hand term is 1, and thus the max is at p = 0, in the classical

case that g = 1 but not in the quantum case that g = 1/2.

Without error correction (e = 0) we can simply sum up Fi,e,g across

coefficients:

effort(e = 0, g) =

(
key length∑

i=0

Fi,e,g

)−1
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However, with error correction, computing separately for each coefficient

will give the wrong answer unless we account for the relationship between

Pr((n0, n±1, n±2) in position i) and in position j. But from the arithmetic-

geometric means inequality it may be shown that

effort(e, g) ≥

(
key length∑

i=0

Fi,e,g

)−1
· n−e

[[TODO: correlation at least between opposite coefficients]]

There is a further possibility that ciphertexts may cause correlated fail-

ures that break error correction for reasons other than their norms, for

example if they have regularly-spaced large coefficients. This may further

reduce security against failure attacks. We leave analysis of this problem to

future work.
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