
Faster Montgomery and double-add ladders for
short Weierstrass curves

Mike Hamburg

Rambus mhamburg@rambus.com

Abstract. The Montgomery ladder and Joye double-add ladder are well-known
algorithms for elliptic curve scalar multiplication with a regular structure. The
Montgomery ladder is best known for its implementation on Montgomery curves,
which requires 5M+4S+1m+8A, and 6 field registers. Here (M, S, m, A) represent
respectively field multiplications, squarings, multiplications by a curve constant, and
additions or subtractions. This ladder is also complete, meaning that it works on all
input points and all scalars.
Many protocols do not use Montgomery curves, but instead use prime-order curves
in short Weierstrass form. As of 2011, the fastest formulas for the Montgomery and
Joye ladders on these curves each required 9M + 5S + 18A per bit. In 2017, Kim et
al. improved this for the Montgomery ladder only to 8M + 4S + 12A + 1H per bit
using 9 registers, where the H represents a halving. Hamburg simplified Kim et al.’s
formulas to 8M + 4S + 8A + 1H using 6 registers.
Here we present improved formulas which compute the Montgomery ladder on short
Weierstrass curves using 8M + 3S + 7A per bit, and requiring 6 registers. We also
give formulas for the Joye ladder that use 9M + 3S + 7A per bit, requiring 5 registers.
We also show a novel technique to make these ladders complete when the curve order
is not divisible by 2 or 3, at a modest increase in cost.
Finally, we discuss curve invariants, exceptional points, side-channel protection and
how to set up and finish these ladder operations.
Keywords: Elliptic Curve Cryptography, Montgomery Ladder, Joye Ladder, Short
Weierstrass Curve, Scalar Multiplication

1 Introduction and related work
The core operation of most elliptic curve cryptography algorithms is scalar multiplication,
in which an element P of the elliptic curve group is multiplied by an integer (“scalar”)
x. Therefore, considerable study has been devoted to optimizing scalar multiplication
algorithms.

The present paper is concerned with variable-base scalar multiplication algorithms,
meaning that P is not known ahead of time, so no precomputation has been done on it.
Typically x is secret, so to avoid side-channel attacks, the algorithm’s timing and control
flow should not depend on x.

1.1 The Montgomery and double-add ladders
The Montgomery ladder [Mon87] is a general algorithm for computing a power or scalar
multiple of a group element. This algorithm’s regular structure is conducive to implemen-
tations that resist side-channel attack. This technique is fastest on elliptic curves in the
Montgomery form

y2 = x3 + Ax2 + x.

mailto:mhamburg@rambus.com


2 Faster Montgomery and double-add ladders for short Weierstrass curves

Montgomery ladder Double-add ladder

1 (Q0, Q1)← (0, P )
2 For i = n− 1 down to 0:
3 b← ki

4 Q¬b ← Q¬b + Qb

5 Qb ← 2Qb

6 Output Q0 = x · P

1 (Q0, Q1)← (0, P )
2 For i = 0 to n− 1:
3 b← ki

4 Q¬b ← 2 ·Q¬b + Qb

5 Output Q0 = x · P

Figure 1: The Montgomery and double-add ladders

But it can be efficiently applied on any elliptic curve, in particular those in the short
Weierstrass form

y2 = x3 + ax + b.

Joye’s double-add ladder [Joy07] is a similar algorithm, which is also used in efficient
implementations of elliptic curve scalar multiplication. In some sense, the Montgomery
ladder and the Joye algorithm are dual [Wal17].

Each algorithm takes as input a group element P and a scalar k, and computes k · P.
Let k have a binary representation

k :=
n−1∑
i=0

2iki where each ki ∈ {0, 1}.

The two algorithms are shown in Figure 1.
While the Montgomery ladder can be implemented using only Q0 and Q1, many

implementations also use the base point P = Q1 −Q0. Likewise, implementations of the
Joye ladder often track a third point

R := Q1 + Q0 = 2i · P

in the ith iteration. In these cases, the ladder update steps are rearrangements of each
other: both map triples of points (P, Q, R) to (P, P + Q, 2 ·R) in some order. This often
makes it possible to convert between formulas for the Montgomery ladder and those for
the double-add ladder.

However, the converted formulas aren’t always equally performant or side-channel resis-
tant. They also may need adjustment if the three points don’t use the same representation
in the ladder state. For example, the base point never changes in the Montgomery ladder,
so it might be stored in affine coordinates; or the ladder might track the y-coordinates of
some points but not others.

1.2 Co-Z coordinates
Elliptic curve implementations typically calculate using a projectivized version of the
elliptic curve for efficiency. Instead of storing (x, y), points are represented in either
projective coordinates as (xZ : yZ : Z) or in Jacobian coordinates as (xZ2 : yZ3 : Z). This
avoids costly finite-field divisions except at the end of the computation. When storing
multiple points in a ladder, the straightforward way is to use a separate Z-coordinate for
each point.

Co-Z formulas [Mel07, GJM10, Riv11] instead use the same Z-coordinate for all points
in the ladder state. This reduces memory usage, and it can also improve performance
because often the first step in a point addition is to rescale both points to have the same
Z-coordinate, and that step is not needed for co-Z representations. In some cases, that



Mike Hamburg 3

Z-coordinate need not even be stored, as having the X and/or Y coordinates for multiple
points will provide enough information to recover Z. This provides a further savings.

Most formulas on short Weierstrass curves need special cases around the identity point
(also known as the “neutral point” or the “point at infinity”), which is written with Z = 0.
This is especially true for co-Z formulas, because if one point has Z = 0 then they all
do; the finite points would then be represented as (0 : 0 : 0), which is indeterminate. In
particular, this means that a co-Z Montgomery ladder cannot begin with the points (0, P ):
it must begin instead after the first nonzero key bit and the state (P, 2P ). Likewise, the
Joye ladder must begin with (P, P ). To avoid side-channel attacks, the secret scalar is
typically rewritten by adding multiples of the curve order q, so that its first1 bit is always
1, and the ladder is begun after the first step.

1.3 The Kim et al. formulas
In 2017, Kim et al. published a variant of the Montgomery ladder with “on-the-fly adaptive
coordinates” of the form (X1, Y1, X2, Y2, S, T, R) [KCK+17]. These formulas improved the
previous state of the art of 9M + 5S + 18A per bit [Riv11] to 8M + 4S + 12A + 1H
per bit, using 9 registers which each hold one field element. The formulas are highly
complex, with each operation depending on two bits of the key instead of one. Hamburg
presented a simplified and optimized version of Kim et al.’s main ladder formula at the
CHES 2017 rump session [Ham17], using modified Jacobian co-Z coordinates of the form
(3X0, 2Y0, X1−X0, X2−X0, 2M) where the three points lie on the line Y = M(X−X0)+Y0.
Hamburg’s formulas require 8M + 4S + 8A + 1H per bit, and 6 field registers.

1.4 Our contribution
In Section 2.1 and Appendix B we give two new formulas for the Montgomery ladder. Both
use 8M + 3S + 7A and 6 field registers. The formula in Section 2.1 is closely related to
Hamburg’s rump session formula. It keeps a ladder state of (XQP , XRP , YP , M), dropping
the XP from [Ham17] (called X0 in that paper). In addition to improving performance,
this change gives an improvement in resistant to horizontal side-channel attacks: it no
longer reuses the round outputs as intermediates within the round.

An alternative formula in Appendix B instead tracks (XQP , XRP , XRQ
2, YQ, YR). This

formula has the same performance as the one in Section 2.1 except that it requires an extra
conditional swap for YQ and YR. It can be parallelized efficiently over four multiplication
units instead of three, but does not share the additional resistance to horizontal side-channel
attacks. 2

In Section 2.2 we show a Joye ladder formula, based on our first Montgomery ladder
formula, using 9M+3S+7A and 5 registers. We are not aware of any previous Montgomery
or Joye ladder formula that requires only 5 field registers.

Counting registers is somewhat tricky. Our register counts do not count the scalar
itself, the curve constants, or small constants such as 2 and 3. They also assume that the
processor supports multiplication in place (X ← X ·Y ) and for the complete Joye formulas,
reverse subtraction in place X ← Y − X). If it does not support these operations, an
additional register is required.

We show how to set up and finalize the ladder state for either x-only or (x, y) calculations.
For the Joye ladder, (x, y) calculations generally require an extra M per bit to track the

1“First” meaning least-significant for the Joye ladder, or most-significant for the Montgomery ladder.
For example, on the Joye ladder we would add q to the scalar if it is even.

2A preprint of this paper presents the formulas in Appendix B as tracking (XQP , XRP , M, M̄) where
M̄ is an additional slope variable. The present version performs the same calculations, but has a different
boundary between the end of one iteration and the beginning of the next. We have chosen to use the
present version because it is more similar to the calculations in the rest of the paper.



4 Faster Montgomery and double-add ladders for short Weierstrass curves

Curve Ladder Ref Cost per scalar bit Swap Regs
Mont Mont† [Mon87] 5M + 4S + m + 8A 2 6
Weier Either [Riv11] 9M + 5S + 18A 2 9
Weier Mont† [SM16] 10M + 5S + 2m + 17A 2 9
Weier Mont [KCK+17] 8M + 4S + 12A + 1H ∗ 9
Weier Mont [Ham17] 8M + 4S + 8A + 1H 1 6
Weier Mont Figure 3 8M + 3S + 7A 1 6
Weier Mont Figure 6 8M + 3S + 7A 2 6
Weier Mont† Suppl. 9M + 3S + 8A + 1E 6 6
Weier Joye Figure 4 9M + 3S + 7A 2 5
Weier Joye† Suppl. 9M + 3S + 9A + 1E 6 5

Notes:
• † These ladders are complete, at least for a subset of curves. Our new complete ladder formulas require

comparisons, written as E.
• ∗ The Kim et al. ladder is not written using conditional swaps, and we did not attempt to convert it.
• The costs do not include setup or finalization. Setup may include an on-curve check and finalization

always includes a division. Division typically costs between 1S/bit and (1S + 1M)/bit, depending on
the modulus and on memory constraints.

• Some of these formulas have ways to turn multiplications into squarings at the cost of several additions,
possibly requiring more registers.

• The register counts for our new formulas count setup and finalization, when using the technique
fromSection 2.4.2.

• These costs are for x-only ladders; recovering y requires extra storage. It also costs an extra 1M/bit for
our Joye ladders but not our Montgomery ladders.

Figure 2: Comparison to previous work.

Z coordinate. We also give invariants on the ladder state and a discussion of side-channel
protection.

See Figure 2 for a comparison of our new formulas to past work. They are still
not as fast as the Montgomery ladder on Montgomery curves [Mon87]: approximating
1S ≈ 0.75M, m ≈ 0.25M, 1A ≈ H ≈ 0.1M gives an estimate of 21% more compute time
per scalar bit, excluding the final division. This is an improvement from [Ham17] and
[Riv11], which use respectively 31% and 61% more compute time per bit than [Mon87].
Our new formulas also support the usual S−M tradeoffs at the cost of extra additions
and registers, but we present them in their simplest and most compact form.

The formulas in Section 2.1, Section 2.2 and Appendix B are not complete: they break
down if the neutral point appears in the ladder state but not in any other case. In Section 3
we give an analysis of this problem and a novel solution, which is not specific to our
formulas: it potentially allows other ladders to implement complete scalar multiplication
at a modest performance cost. These formulas are given in the supplemental material.

2 Ladder Formulas
Our ladder works on short Weierstrass curves over large-characteristic fields. They are
derived from the following theorem:

Theorem 1 (Ladder formulas). Let

P = (xP , yP ), Q := (xQ, yQ), R := P + Q := (xR, yR)

be the state of the Montgomery ladder on an elliptic curve y2 = x3 + ax + b defined over a
field of characteristic other than 2. The three points (P, Q,−R) lie on a line with slope



Mike Hamburg 5

m := (yQ + yR)/(xQ − xR). Let

P = (xP , yP ), S := Q + R = (xS, yS), T := 2R = (xT , yT )

be the state after a ladder operation, where (P, S,−T ) lie on a line of slope m′. Let

r := xQ − xR

2yR

, s := (xR − xP ) · r, t := 2yR

xQ − xR

, u := 2yQ

xQ − xR

.

Then

xS − xP = −t · u = t · (t− 2m)
xT − xP = s2 − 2yP · r

m′ = t−m− s.

Proof. Deferred until Appendix A.

These formulas are compatible with Jacobian coordinates: if (m, x, y) are replaced by
(mZ, xZ2, yZ3) then the outputs will also be in that form, with the same Z.

2.1 Formulas for the Montgomery ladder
Theorem 1 gives a straightforward strategy to implement the Montgomery ladder. The
state variables will be

XQP := (xQ − xP ) · Z2

XRP := (xR − xP ) · Z2,

M := m · Z
YP := 2yP · Z3

For most curves, the value of Z need not be represented; see Section 2.4. On each step,
we calculate YR = YP + 2MXRP . Then Z will be multiplied by a local denominator
z := YR · (XQP −XRP ). We can then easily compute rz, sz, tz and mz, from which the rest
of the terms follow homogeneously.

An optimized Montgomery ladder implementation is shown in Figure 3. It is also
possible to use the slope m̄ of the line connecting Q and R in the ladder state with
comparable performance, but this doesn’t generalize as well to the Joye ladder. That result
is shown in Appendix B.

2.2 Formulas for the Joye ladder
For the Joye double-add ladder, the same outline works, but we are conditionally swapping
(xP , yP )↔ (xQ, yQ) instead of (xQ, yQ)↔ (xR, yR). The x-coordinates are easily rearranged
to support this by tracking XRP := XR−XP and XRQ := XR−XQ. For y-coordinates, we
now need to track both yP and yQ. Conveniently, we can use both coordinates to compute
xS − xP = −tu from Theorem 1. The Joye ladder state is:

XRP := (xR − xP ) · Z2

XRQ := (xR − xQ) · Z2,

M := −2m · Z
YP := 2yP · Z3

YQ := 2yQ · Z3

An optimized Joye ladder is shown in Figure 4.



6 Faster Montgomery and double-add ladders for short Weierstrass curves

Montgomery ladder. Input: ladder state (XQP , XRP , M, YP )

1 YR = YP + 2 ·M ·XRP

2 E = XQP −XRP

3 F = YR · E
4 G = E2

5 X ′RP = XRP ·G
6 H = Y 2

R

7 M ′ = M · F

8 Y ′P = YP · F ·G
9 K = H + M ′

10 L = K + M ′

11 M ′′ = X ′RP −K

12 XSP = H · L
13 XT P = X ′RP

2 + Y ′P
14 Y ′′P = Y ′P ·H

Output: ladder state (XSP , XT P , M ′′, Y ′′P )

Notes:
• These formulas use 8M + 3S + 7A and two temporary registers for a total of 6.
• An S − M tradeoff is available by computing F = 1

2 · ((YR + E)2 − G − H), yielding 7M + 4S + 10.5A.
• The multiplications can easily be parallelized over 2 or 3 units. When parallelizing over 2 multiplication

units, 4 of the 5 pairs can be made to share an operand.

Figure 3: Improved Montgomery ladder.

2.3 Ladder setup
The initial state of the ladder encodes the points P = (xP , yP ) and R = 2P = (xR, yR). Let
(x, y) lie on the elliptic curve y2 = x3 + ax + b. We need to compute (xR − xP )Z2, 2yP Z3

and mZ, where m = (3x2
P + a)/(2yP ) is the slope of the tangent at P .

Since xR + 2xP = m2, we have (xR − xP )Z2 = (mZ)2 − 3xP Z2. Setting Z = 2yP , we
get

Z2 = 4y2
P = 4(x3

P + axP + b)
mZ = 3x2

P + a

XRP = (mZ)2 − 3xP Z2

2yP Z3 = (Z2)2.

Since these formulas depend on y2
P rather than yP , they still work if yP is not given, which

is common for elliptic curve Diffie-Hellman protocols. However, if the elliptic curve is not
twist-secure, then the implementation must check that the putative Z2 is actually square.
Otherwise the ladder will still work, but with arithmetic on the curve’s quadratic twist. If
power analysis is not a concern, or if the twist has no small subgroups, then the check can
be implemented in a batch with the final division [Ham12].

The ladder setup can easily be accomplished in 5 registers or fewer, so this routine
doesn’t increase the memory footprint of either implementation. This includes the check
that Z2 is actually square.

2.4 Finalization
2.4.1 Simple technique

To complete the ladder, we must recover the final xQ, and optionally yQ, from the ladder
state. In the Montgomery ladder, if the original coordinates (xP , yP ) are retained, this is
easy. We have both yP Z3 = YP /2 and xP Z2 = (M2−XQP −XRP )/3, so we can calculate3

1
z

= yP · xP Z2

xP · yP Z3

3These calculations require trivial modifications if the constants 1/2 and 1/3 are not available.



Mike Hamburg 7

Joye ladder. Input: ladder state (XRP , XRQ, YP , YQ, M)

1 YR = M ·XRP − YP

2 G = X2
RQ

3 X ′RP = XRP ·G
4 Y ′P = YP ·XRQ · YR ·G
5 Y ′Q = YQ · YR

6 H = Y 2
R

7 M ′ = H − Y ′Q − 2 ·X ′RP

8 XT P = X ′RP

2 + Y ′P
9 Y ′′Q = Y ′Q ·H

10 Y ′′P = Y ′P ·H
11 XT S = XT P + Y ′′Q

12 YS = M ′ · Y ′′Q + Y ′′P

Output: ladder state (XT P , XT S , Y ′′P , YS , M ′)

Notes:
• These formulas use 9M + 3S + 7A, and no temporary registers for a total of 5.
• An S − M tradeoff is available by computing XRQ · YR = 1

2 · ((YR + XRQ)2 − G − H), yielding
8M + 4S + 10.5A.

• If Z is to be tracked, it should be multiplied by XRQ · YR.
• The calculation of YR can be moved to the end of the round, so that YR is a state variable instead of M .
• The multiplications can easily be parallelized over 2 or 3 units. When parallelized over 2 units, if YR is

moved to the end of the round then 5 of the 6 pairs can be made to share an operand.

Figure 4: Improved Joye ladder.

and recover the final point (xQ, yQ). Likewise, if only the original xP is retained, we can
calculate 1/Z2 = xP /(xP Z2). However, this technique does not work if xP = 0, which can
happen on certain curves [AT03], so we will propose an improved technique.

The improved technique doesn’t work with curves of j-invariant 0 or 1728. The most
popular curve with j-invariant 0, NIST’s secp256k1, has no points with xy = 0, so the
simple technique can be used for the Montgomery ladder on that curve.

2.4.2 Improved technique

We want to avoid incompleteness when the starting point has xy = 0. We also need
an alternative technique for the Joye ladder: the point P in the ladder isn’t the base
point P0, but instead on the nth step the ladder has R = 2nP0. Unless that point has
been precomputed, we cannot take advantage of a known point to determine Z. Likewise,
low-memory implementations of the Montgomery ladder may wish to discard the base
point.

If the curve doesn’t have j-invariant 0 (meaning that a = 0) or 1728 (meaning that
b = 0), then we have an alternative technique to recover Z2, which allows us to recover xQ

but not yQ. Let c := yP −mxP be the y-intercept of the line connecting the (P, Q,−R).
Then (xP , xQ, xR) are the roots of

y2 = (mx + c)2 = x3 + ax + b,

meaning that

x3 −m2x2 + (a− 2mc)x + (b− c2) = (x− xP ) · (x− xQ) · (x− xR).

Rearranging, we get

a = 2mc + xP xQ + xQxR + xRxP

b = c2 − xP xQxR.

Note that in the ladder state, the values of m, xi and c are scaled by Z, Z2 and Z3

respectively, so these formulas compute A := aZ4 and B := bZ6 instead. This allows us to



8 Faster Montgomery and double-add ladders for short Weierstrass curves

calculate 1/Z2 = Ab/(aB), which is enough to calculate xQ but not yQ. The division will
be 0/0 if and only if a = 0, b = 0 or Z = 0.

Alternatively, if yP is available we can compute 1/Z = aByP /(AbyP Z3). This would
fail if yP = 0, but in that case even the starting state of the ladder contains the point at
infinity.

Because Y = 2 · y · Z3, the true value of y is in the field if and only if this putative Z2

is actually square. Its Jacobi symbol can be checked during the inversion at little extra
cost using the batching technique in [Ham12]. This means that if power analysis is not
a concern, or if the curve is twist-secure, then the initial on-curve check can be deferred
until finalization.

With careful use of the identity xP + xQ + xR = m2, the improved finalization step
can also be calculated in 5 registers, including the invariant and Jacobi symbol checks.
As a result, using our Joye ladder formulas it is possible to calculate an entire x-only
variable-base scalar multiplication using only 5 mutable field registers, plus the scalar and
the curve constants a and b.

2.4.3 Tracking Z

If yP is given and we want to recovery yQ on the Joye ladder, or if j ∈ {0, 1728}, then we
can instead track Z at a cost of 1M per bit. If yP is not given and j ∈ {0, 1728}, then we
can instead track Z2 at a cost of 1M + 1S per bit and one extra register4, or (Z/yP , y2

P )
at a cost of 1M per bit and 2 extra registers.

2.5 Ladder state invariants
The improved technique’s formulas for A = aZ4 and B = bZ6 also serve as a ladder state
invariant: we must have

A3b2 = a3B2.

This equation can be checked during finalization, or periodically between ladder steps, as a
fault attack countermeasure. If Z or Z2 is tracked, then the stronger conditions A = aZ4

and B = bZ6 can be checked instead.

3 Completeness
3.1 Completeness of the Montgomery and Joye formulas
This section applies principally to curves of prime order q ≥ 5, since those are the most
common use case for short Weierstrass curves. However, it can be adapted to curves of
other orders. Recall that the ladder operation computes

(P, Q, R)→ (P, Q + R, 2R).

The Montgomery and Joye ladders will resolve to 0/0 if the (possibly untracked) Z-
coordinate ever becomes 0. In each iteration, Z is scaled by 2YR(XR −XQ). This is zero if
and only if either YR = 0 (meaning that 2R = 0), or XR = XQ (meaning that Q = ±R).
This condition cannot begin with Q = R, because then P = R−Q would already be the
neutral point and we would already have Z = 0. If the curve has odd prime order q, then
we also cannot have 2R = 0.

This leaves the case R = −Q = P/2. How soon after the initial state (P0, P0, 2P0) can
this occur? In the Montgomery ladder, we would have

Q = (`q − 1)/2 · P = (`q − 1)/2 · P0 for some odd `,

42M or two extra registers for the Joye ladder, because the 5-register version doesn’t calculate the
value XQ · YR to multiply into Z.



Mike Hamburg 9

which cannot occur until dlog2 qe− 2 ladder steps after setup. Likewise, in the Joye ladder,
if the condition R = −Q occurs i steps after setup, then

2i+1P0 = R = −Q = −k0..iP0,

where the initial segment k0..i of the scalar satisfies 0 < k0..i < 2i+1. This implies that
2i+2 ≥ q, so again i ≥ dlog2 qe − 2. If the scalar is not extended beyond dlog2 qe bits, then
incompleteness is a risk only for the last two ladder steps.

Overall, the ladder and finalization formulas are correct when the ladder never reaches
the neutral point, and one of the following finalization techniques is used:

• The simple technique in Section 2.4.1 for the Montgomery ladder on curves with no
point of the form (0, y).

• The improved technique in Section 2.4.2 on curves with j-invariant neither 0 nor
1728.

• The Z-tracking technique in Section 2.4.3.

3.2 Avoiding the neutral point
The ladder formulas are still incomplete when they compute a state containing the neutral
point. The probability that this happens is negligible if all the following conditions are all
met:

• The curve’s order q is a large prime.

• The scalar is uniformly random mod q, or at least has sufficiently high min-entropy.

• If the scalar is represented using more bits than the curve order, then the repre-
sentation’s initial segments of length at least ≥ dlog2 qe − 2 must also have high
min-entropy.

• Either the twist also has prime order, or the calculation begins with an on-curve
check.

If power analysis isn’t a concern, then reaching the neutral point on the twist may not
matter, so long as the result is rejected by a timing-invariant check at the end of the
calculation.

In this section, we will show a technique which avoids the neutral point when the
curve’s order is not divisible by 2 or 3. This technique is generally applicable, and for some
ladders (e.g. our Joye ladder) it adds no extra multiplications. However, it does require
extra adds and conditional swaps, and it doesn’t prevent an attacker from using power
analysis to determine whether the neutral point was reached. If q is prime, the avoidance
technique doesn’t need to be used for the first dlog2 qe − 2 steps of the ladder.

3.3 Notation change: ladder state sums to 0
For both the Joye and Montgomery ladder, the state (P, Q, R) normally satisfies R =
P + Q. However, the state is typically permuted between ladder steps, and we will further
permute it here. To ensure that the ladder state satisfies a consistent invariant without
introducing additional cases, we will write it as (P, Q, R̄) where R̄ = −R, so that no
matter how the state is permuted, P + Q + R̄ = 0. This changes the ladder operation to
(P, Q, R̄)→ (P, Q− R̄, 2R̄).



10 Faster Montgomery and double-add ladders for short Weierstrass curves

3.4 Entering and leaving the neutral zone
We call the set of states where 0 ∈ {P, Q, R̄} the “neutral zone”. If the curve’s order is
odd5, then 2R̄ 6= 0. So on such curves, the only way to enter the neutral zone6 is by the
ladder step

(−2Q, Q, Q)→ (−2Q, 0, 2Q).

On the next step, the Montgomery ladder either stays in this state or exits the neutral
zone to (−2Q,−2Q, 4Q). Likewise, the Joye ladder either doubles to (−4Q, 0, 4Q) or exits
to (−2Q,−2Q, 4Q).

3.5 The shadow state
We propose to avoid this set of transitions by recognizing that Q = R̄ and instead using an
equivalent, equally long sequence of transitions that avoids the neutral zone. Specifically,
we permute the state (−2Q, Q, Q) to (Q,−2Q, Q) so that the ladder operation moves it
to the “shadow” state (Q,−3Q, 2Q). This state is outside the neutral zone if the curve’s
order is not divisible by 3. It can transition to (2Q,−4Q, 2Q), which can be negated
and permuted into the exit state (−2Q,−2Q, 4Q). Or, again through the usual ladder
operation, it can remain the same (like the Montgomery ladder) or double (like the Joye
ladder).7 If the ladder should end in the shadow state, then the answer is either the neutral
point or ±2Q, which can also be extracted from that state.

This technique is simplest to implement using our Joye ladder formulas with a state of

XP R = (xP − xR) · Z2

XQR = (xQ − xR) · Z2

YP = 2yP · Z3

YQ = 2yQ · Z3

YR = 2yR · Z3

and optionally Z. This allows permutations of the Y -coordinates to be done directly.
Negating the state requires only negating Z, if it is present, and is free if Z is not
present. The only tricky part is how to permute the X-coordinates. The simple case is
condswap(P, Q), which is equivalent to

condswap(XP R, XQR); condswap(YP , YQ).

The other swaps require arithmetic on the X-coordinates, and it is preferable not to perform
that conditionally. But we can build these swaps using only unconditional arithmetic and
conditional swaps. For example, we can implement condswap(P, R) as

swap(Q, R); condswap(P, Q); swap(Q, R).

Though they are described as Joye ladder formulas, they could also be used for the
Montgomery ladder, except that we would track the x-coordinates XQP and XRP .

A state diagram of the neutral point avoidance technique is shown in Figure 5, and
full formulas for the x-only case are given in the supplemental material. These complete
formulas do not require any extra registers, at least if a “reverse subtraction” operation
X ← Y −X is available.

5A similar avoidance scheme should work to avoid 2R̄ = 0, but it requires a more detailed case analysis.
In practice, usually curves with even order are Montgomery curves, and the Montgomery ladder on those
curves is complete [BL17].

6If the protocol allows the input to be the neutral point, then this must be handled separately.
7States proportional to permutations of (1, 2, −3) are the only states outside the neutral zone with

either of these properties.



Mike Hamburg 11

(−2, 1, 1)

(−2, 0, 2)(−2, 2, 0)

(1,−2, 1)

(1,−3, 2)

(2,−3, 1)

(2,−4, 2)

(−3, 2, 1)

(−3, 1, 2)

(−2,−2, 4)
neg.

Montgomery Avoid neutral

(−2, 1, 1)

(−2, 0, 2)(0,−2, 2)

(0,−4, 4)

(−1, 2,−1)

(−1, 3,−2)

(−2, 3,−1)

(−2, 4,−2)

(−2,−1, 3)

(−2,−4, 6)

(−2,−2, 4)

neg.
Joye Avoid neutral

Notes:
• The left sides show the transitions into, within and out of the neutral zone. The right sides show the

corresponding transitions using our neutral-point avoidance technique.
• All ladder states are given multiples of Q, with the last point R negated to R̄.

• Thick arrows denote the ladder operation (P, Q, R̄) (P, Q − R, 2R̄).

• Thin arrows denote permutations, and with the marking “neg”, negations.
• Double arrows mean that one state is a permutation of another, except with all points doubled. So the

state transitions are the same from there, but with Q replaced by 2Q.

Figure 5: Avoiding the neutral point.



12 Faster Montgomery and double-add ladders for short Weierstrass curves

4 Side-Channel Protections
We offer some insight into side-channel attacks and mitigations for these new ladder
formulas.

Horizontal attacks: Horizontal attacks are power analysis attacks which look for corre-
lations between values calculated or stored between one ladder step and the next. This
enables the attacker to determine whether the points have been swapped between rounds
or not, which determines the key bit. With our formulas, the attack should be harder on
the Montgomery ladder than on the Joye ladder, because the former does not reuse any of
its outputs within the ladder step. However, this is likely only a partial mitigation of the
horizontal attack. Suitable additional defenses against this attack include scalar blinding
or inter-step projective reblinding.

Fault attacks: All values within the ladder are used, and none of the intermediates are
expected to be the same once RPA has been mitigated. This should make ineffective-fault
attacks more difficult. To defend against other fault attacks, implementations can check
the ladder invariants from Section 2.5, either periodically or at the end of the ladder
computation. For full defense against fault attacks other countermeasures are required,
and are well beyond the scope of this work.

5 Conclusions and Future Work
We have presented new, optimized formulas for the Montgomery and Joye ladders on
short Weierstrass curves. Our Montgomery ladder formulas are faster and slightly more
side-channel-resistant than our Joye ladder formula, and we hope that future work can
improve the Joye formula to match. We have not attempted a computer search for more
optimal formulas with this representation or similar representations, which might well be
fruitful.

For typical applications such as the NIST and Brainpool curves, our ladders are
complete except with negligible probability, and even that negligible probability can be
avoided at a reasonable additional cost. However, the avoidance technique would be more
useful if it could be simplified.

5.1 Acknowledgments
Thanks to Mark Marson for feedback on drafts of this work, and to everyone who pointed
out typos in the preprint.

5.2 Intellectual property disclosure
Some of these techniques may be covered by US and/or international patents.

References
[AT03] Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on elliptic curve

cryptosystem. In Colin Boyd and Wenbo Mao, editors, ISC 2003, volume 2851
of LNCS, pages 218–233. Springer, Heidelberg, October 2003.

[BL17] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the Montgomery
ladder. Cryptology ePrint Archive, Report 2017/293, 2017. http://eprint.
iacr.org/2017/293.

http://eprint.iacr.org/2017/293
http://eprint.iacr.org/2017/293


Mike Hamburg 13

[GJM10] Raveen R. Goundar, Marc Joye, and Atsuko Miyaji. Co-z addition formulae and
binary ladders on elliptic curves. Cryptology ePrint Archive, Report 2010/309,
2010. http://eprint.iacr.org/2010/309.

[Ham12] Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology
ePrint Archive, Report 2012/309, 2012. http://eprint.iacr.org/2012/309.

[Ham17] Mike Hamburg. Speeding up elliptic curve scalar multiplication without either
precomputation or adaptive coordinates, 2017. https://ches.2017.rump.cr.
yp.to/a1933e522beb16591d9dc8e373ad7079.pdf.

[Joy07] Marc Joye. Highly regular right-to-left algorithms for scalar multiplication. In
Pascal Paillier and Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of
LNCS, pages 135–147. Springer, Heidelberg, September 2007.

[KCK+17] Kwang Ho Kim, Junyop Choe, Song Yun Kim, Namsu Kim, and Sekung
Hong. Speeding up elliptic curve scalar multiplication without precomputation.
Cryptology ePrint Archive, Report 2017/669, 2017. http://eprint.iacr.
org/2017/669.

[Mel07] Nicolas Meloni. New point addition formulae for ECC applications. In Inter-
national Workshop on the Arithmetic of Finite Fields, pages 189–201. Springer,
2007.

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[Riv11] Matthieu Rivain. Fast and regular algorithms for scalar multiplication over
elliptic curves. Cryptology ePrint Archive, Report 2011/338, 2011. http:
//eprint.iacr.org/2011/338.

[SM16] Ruggero Susella and Sofia Montrasio. A compact and exception-free ladder
for all short Weierstrass elliptic curves. In International Conference on Smart
Card Research and Advanced Applications, pages 156–173. Springer, 2016.

[Wal17] Colin D. Walter. The Montgomery and Joye powering ladders are dual. Cryp-
tology ePrint Archive, Report 2017/1081, 2017. https://eprint.iacr.org/
2017/1081.

A Proof of ladder formulas
Theorem 1 (Ladder formulas). Let

P = (xP , yP ), Q := (xQ, yQ), R := P + Q := (xR, yR)

be the state of the Montgomery ladder on an elliptic curve y2 = x3 + ax + b defined over a
field of characteristic other than 2. The three points (P, Q,−R) lie on a line with slope
m := (yQ + yR)/(xQ − xR). Let

P = (xP , yP ), S := Q + R = (xS, yS), T := 2R = (xT , yT )

be the state after a ladder operation, where (P, S,−T ) lie on a line of slope m′. Let

r := xQ − xR

2yR

, s := (xR − xP ) · r, t := 2yR

xQ − xR

, u := 2yQ

xQ − xR

.

http://eprint.iacr.org/2010/309
http://eprint.iacr.org/2012/309
https://ches.2017.rump.cr.yp.to/a1933e522beb16591d9dc8e373ad7079.pdf
https://ches.2017.rump.cr.yp.to/a1933e522beb16591d9dc8e373ad7079.pdf
http://eprint.iacr.org/2017/669
http://eprint.iacr.org/2017/669
http://eprint.iacr.org/2011/338
http://eprint.iacr.org/2011/338
https://eprint.iacr.org/2017/1081
https://eprint.iacr.org/2017/1081


14 Faster Montgomery and double-add ladders for short Weierstrass curves

Then

xS − xP = −t · u = t · (t− 2m)
xT − xP = s2 − 2yP · r

m′ = t−m− s.

Proof. The three points P, Q,−P −Q lie on the intersection

y2 = (mx + c)2 = x3 + ax + b.

for some c. The solutions to this equation are roots of a polynomial of the form x3 −
m2x2 + O(x), so that

xP + xQ + xR = m2.

Let m̄ := (yQ − yR)/(xQ − xR) be the slope of the line connecting Q, R and −(Q + R) =
(xS,−yS). We have

m̄2 = xQ + xR + xS; m̄−m = −t; m̄ + m = u.

Therefore

xS − xP = m̄2 − xQ − xR − xP

= m̄2 −m2

= (m̄ + m) · (m̄−m)
= −tu.

We also have −u = −(m̄ + m) = (m− m̄)− 2m = t− 2m. Next, we have

yS − yP = −(−yS − yR) + (−yR − yP )
= −m̄ · (xS − xR) + m · (xR − xP )
= −m̄ · (xS − xP ) + (m̄ + m) · (xR − xP )
= −m̄ · (xS − xP ) + u · (xR − xP )

whence the output slope from P to Q + R is

mout := yS − yP

xS − xP

= −m̄ + u(xR − xP )
−tu

= −m̄− s

= t−m− s

Finally, let’s calculate xT − xP . We have mout = −m̄ − s. In calculating xT − xP =
m2

out − 2xP − xS, we may expand

m2
out = m̄2 + 2m̄s + s2 = xQ + xR + xS + 2m̄s + s2

wherein
2m̄s = 2 yQ − yR

xQ − xR

(xR − xP )(xQ − xR)
2yR

= (yQ − yR)(xR − xP )
yR

.

We also have the cross product identity

(xQ − xP )yR + (xR − xP )yQ = (xQ − xP )(−yP −m(xR − xP ))
+(xR − xP )(yP + m(xQ − xP ))

= (xR − xQ)yP .



Mike Hamburg 15

Combining these,

xT − xP = m2
out − 2xP − xS

= xQ + xR + xS + 2m̄r + s2 − 2xP − xS

= (xQ − xP ) + (xR − xP ) + (yQ − yR)(xR − xP )
yR

+ s2

= (xQ − xP )yR + (xR − xP )yR + (yQ − yR)(xR − xP )
yR

+ s2

= (xQ − xP )yR + (xR − xP )yQ

yR

+ s2

= (xR − xQ)yP

yR

+ s2

= s2 − 2 · yP · r

This completes the proof.

B The (YQ, YR) ladder
It is also possible to perform a Montgomery ladder whose state incorporates YQ and YR,
instead of YP . The ladder state comprises

XQP := (xQ − xP ) · Z2

XRP := (xR − xP ) · Z2

G := (xR − xQ)2 · Z4

YQ := 2yQ · Z3

YR := 2yR · Z3

The ladder requires 8M + 3S + 7A per bit, and is shown in Figure 6.

Montgomery ladder. Input: ladder state (XQP , XRP , G, YQ, YR)

1 X ′QP = XQP ·G
2 X ′RP = XRP ·G
3 L = YQ · YR

4 H = Y 2
R

5 J = XRP − L
6 M = J + XRP −H
7 XSP = H · L

8 K = J2

9 XT P = X ′RP · J + X ′QP ·H
10 XT S = XT P −XSP

11 YS = (XT S −K) ·H
12 YT = M ·XT S + YS

13 G′ = X2
T S

Output: ladder state (XSP , XT P , G′, YS , YT )

Notes:
• These formulas use 8M + 3S + 7A and 6 field registers.
• The Z value is multiplied by XT S · YR in each iteration.
• The formulas can be parallelized over two, three or four multiplication units.
• When parallelized over 2 multiplication units, they can be arranged so that all pairs of products share

an operand. These multiplications can in turn be paired up to run across 4 multiplication units.

Figure 6: (YQ, YR) Montgomery ladder.

The main value of this ladder seems to be parallelization. For serial use cases, while
the performance of the Montgomery ladder is the same, the outputs are reused within the
round, which increases the risk of a horizontal attack.



16 Faster Montgomery and double-add ladders for short Weierstrass curves

The finalization equations for this version of the ladder state are similar to those in
Section 2.4, since the value of M can be remembered as a round output.


	Introduction and related work
	The Montgomery and double-add ladders
	Co-Z coordinates
	The Kim et al. formulas
	Our contribution

	Ladder Formulas
	Formulas for the Montgomery ladder
	Formulas for the Joye ladder
	Ladder setup
	Finalization
	Ladder state invariants

	Completeness
	Completeness of the Montgomery and Joye formulas
	Avoiding the neutral point
	Notation change: ladder state sums to 0
	Entering and leaving the neutral zone
	The shadow state

	Side-Channel Protections
	Conclusions and Future Work
	Acknowledgments
	Intellectual property disclosure

	Proof of ladder formulas
	The (YQ, YR) ladder

