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1. INTRODUCTION

Secure encryption is arguably the most basic task in cryptography, and significant
work has gone into defining and attaining it. All commonly accepted definitions
for secure encryption [Goldwasser and Micali 1984; Rackoff and Simon 1991; Dolev
et al. 2000; Bellare and Namprempre 2000; Katz and Yung 2000; Bellare and Ro-
gaway 2000; Krawczyk 2001] assume that the plaintext messages to be encrypted
cannot depend on the secret decryption keys themselves. The danger of encrypting
messages that the adversary cannot find on its own was already noted more than
two decades ago by Goldwasser and Micali [Goldwasser and Micali 1984, §5.1].

Over the last few years, however, it was observed that in some situations the
plaintext messages do depend on the secret keys. An important example is when
we have a cycle of public/secret key-pairs (pki, ski) for i = 1, . . . , n, and we encrypt
each ski under pk(i mod n)+1. Security in this more demanding setting was termed
key-dependent message security (KDM-security) by Black et al. [Black et al. 2002]
and circular security by Camenisch and Lysyanskaya [Camenisch and Lysyanskaya
2001].

Such situations may arise due to careless key management, for example a backup
system may store the backup encryption key on disk and then encrypt the entire
disk, including the key, and backup the result. Another example is the BitLocker
disk encryption utility (used in Windows Vista) where the disk encryption key can
end up on disk and be encrypted along with the disk contents. There are also situ-
ations where circular security is needed “by design”, e.g., Camenisch and Lysyan-
skaya used it in their anonymous credential system [Camenisch and Lysyanskaya
2001] to discourage users from delegating their secret keys. Finally, in the formal-
methods community the notion of key-dependent security from [Black et al. 2002]
was used to prove equivalence between “computational security” and “axiomatic
security” [Laud and Corin 2003; Adao et al. 2005].

Definitions of security for this setting were given by Black et al. [Black et al.
2002], who defined models of KDM security in both the symmetric and public-key
settings. In their public-key model the adversary is given public keys pk1, . . . ,pkn
and can access an oracle O that returns the encryption of g(sk1, . . . , skn) under
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pki for any polynomial-time function g and any index 1 ≤ i ≤ n of the adversary’s
choosing. (A key-cycle can be obtained in this model when the adversary requests
the encryption of ski under pk(i mod n)+1 for all i.) The system is KDM-secure if
the adversary cannot distinguish the oracle O from an oracle that always returns
an encryption of (say) the all-zero string.

A simple example of KDM is when an encryption system is used to encrypt
its own secret key (i.e., a cycle of size one). It is straightforward to construct
a secure encryption scheme that becomes completely insecure once the adversary
sees such self-referential ciphertext, and similarly it is straightforward to construct
an encryption scheme that remains secure under such self-referential encryption
[Black et al. 2002].3 The question becomes much harder when dealing with more
complicated key-dependent messages, for example key-cycles of size more than one.
For these cases, the problem has been wide open. On one hand, we had no examples
of encryption systems that are secure without key-cycles but demonstrably insecure
in the presence of a key cycle of size more than one. On the other hand, we had
no constructions that can be proved to meet such notions of security (except by
relying on the random-oracle heuristic). Some initial steps toward constructions in
the standard model are given in [Halevi and Krawczyk 2007] (who focused on other
primitives such as PRFs) and [Hofheinz and Unruh 2008] (who achieved weaker
variants of these security notions).

1.1 Our results

Our main result is a public-key system that is circular-secure (or even “clique-
secure”) in the standard model under the Decision Diffie-Hellman assumption. That
is, even an adversary who sees an encryption of ski under pkj for all 1 ≤ i, j ≤ n
cannot distinguish the ciphertexts from n2 encryptions of (say) the all-zero string.
In fact, we prove a slightly stronger result by showing that our system is KDM-
secure against chosen-plaintext attacks in the model of Black et al. [Black et al.
2002], when the adversary is restricted to affine functions of the keys. Hence, our
system tolerates the adversary seeing encryption cliques (or even encryptions of
more complicated functions of the secret keys) without compromising security.

The difficulty in constructing such a system is the simulation of an encryption
clique without knowledge of any of the secret keys. We overcome this difficulty by
having a system which is sufficiently homomorphic that such a clique can be con-
structed directly. We point out that one may be tempted to use a Cramer-Shoup-
like construction and simulation [Cramer and Shoup 1998] to prove n-circular secu-
rity. After all, a Cramer-Shoup simulator is in possession of all secret keys (needed
for responding to decryption queries) and can use them to create an encryption
clique to give to the adversary. Unfortunately, we could not get this intuition to
work. The problem is that the simulator has to embed the DDH challenge into the
circular clique, but it is difficult to do so while creating a valid clique.

In Section 5 we also take a first step toward showing that standard security

3For the former, start from a secure encryption system (where secret keys are not valid cipher-

texts), and modify the encryption algorithm so that when encrypting the secret key it outputs it

in the clear. For the latter, modify the encryption algorithm so that when encrypting the secret
key it outputs the encryption of a distinguished symbol ⊥.
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notions do not imply circular security. Specifically, we construct a very simple one-
way encryption system that breaks completely as soon as a key-cycle of any size is
published.

2. KDM SECURITY: DEFINITIONS AND PROPERTIES

We begin by reviewing the definitions of Key-Dependent Message security (KDM)
in the public-key setting from Black et al. [Black et al. 2002]. We use a small
extension of the definition, used also in [Halevi and Krawczyk 2007], that restricts
the adversary to a particular set of functions.

A public-key encryption system E consists of three algorithms (G,E,D) where G is
a key-generation algorithm that takes as input a security parameter λ and outputs
a public/secret key pair (pk, sk); E(pk,m) encrypts message m with public key pk;
and D(sk, c) decrypts ciphertext c with secret key sk. We have the usual correctness
condition, asserting that decryption correctly recovers the plaintext message from
the ciphertext (with probability one).

We use S to denote the space of secret keys output by G() and use M to denote
the message (plaintext) space. Throughout the paper we assume that S ⊆ M so
that any secret key sk can be encrypted using any public key pk′. All of these
notations assume an implied security parameter λ.

2.1 KDM security with respect to a set of functions C
Informally, KDM security implies that the adversary cannot distinguish the encryp-
tion of a key-dependent message from an encryption of 0. We define key-dependence
relative to a fixed set of functions C.4 Let n > 0 be an integer and let C be a finite
set of functions C := {f : Sn → M}. For each function f ∈ C we require that
|f(z)| is the same for all inputs z ∈ Sn (i.e. the output length is independent of
the input).

We define KDM security with respect to C using the following game that takes
place between a challenger and an adversary A. For an integer n > 0 and a security
parameter λ the game proceeds as follows:

init.. The challenger chooses a random bit b R← {0, 1}. It generates
(pk1, sk1), . . . , (pkn, skn) by running G(λ) n times, and sends the vector
(pk1, . . . ,pkn) to A.
queries.. The adversary repeatedly issues queries where each query is of
the form (i, f) with 1 ≤ i ≤ n and f ∈ C. The challenger responds by
setting

y ← f(sk1, . . . , skn) ∈M and c
R←

E(pki, y) if b = 0

E(pki, 0|y|) if b = 1

and sends c to A.
finish.. Finally, the adversary outputs a bit b′ ∈ {0, 1}.

We say that A is a C-KDM adversary and that A wins the game if b = b′. Let W

4Technically C is a family of sets, parameterized by the security parameter.
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be the event that A wins the game and define A’s advantage as

KDM(n)Adv[A, E ](λ) :=
∣∣∣∣Pr[W ]− 1

2

∣∣∣∣
Definition 2.1. We say that a public-key encryption scheme E is n-way KDM-

secure with respect to C if KDM(n)Adv[A, E ](λ) is a negligible function of λ for
any adversary A that runs in expected polynomial time in λ.

We are primarily interested in function classes C that imply that the public-key
system E is circular secure. Specifically, we look for function classes C := {f : Sn →
M} that are non-trivial, in the sense that they contain:
—all |M | constant functions f : Sn →M (recall that a constant function maps all

inputs in Sn to some constant m ∈M), and
—all n selector functions fi(x1, . . . , xn) = xi for 1 ≤ i ≤ n.

It is easy to see that KDM-security with respect to such non-trivial function class
implies standard semantic security (even for symmetric encryption), since the con-
stant functions let the adversary obtain the encryption of any message of its choice.
The selector functions imply circular security since they let the adversary obtain
E(pki, skj) for all 1 ≤ i, j ≤ n.

The main result in this paper is a public-key system that is KDM-secure relative
to a non-trivial function class (and hence also circular-secure). Specifically, we
prove security relative to the class of affine functions (over the group that is used
in the system).

2.2 Decision Diffie-Hellman

Let G be a group of prime order q. We let PDDH be the distribution (g, gx, gy, gxy)
in G4 where g is a random generator of G and x, y are uniform in Zq. We let RDDH

be the distribution (g, gx, gy, gz), where g is a random generator of G and x, y, z
are uniform in Zq subject to z 6= xy. A DDH adversary A takes as input a tuple
(g, h, u, v) in G4 and outputs 0 or 1. Define

DDH Adv[A,G] :=
∣∣∣∣Pr[x R← PDDH : A(x) = 1] − Pr[x R← RDDH : A(x) = 1]

∣∣∣∣
Informally, we say that DDH holds in G if DDH Adv[A,G] is negligible for all
efficient A.

3. A CIRCULAR-SECURE ENCRYPTION SCHEME

We build a circular-secure encryption system (for any n) based on the Decision
Diffie-Hellman (DDH) assumption. The system is a generalization of the ElGamal
system where the secret key is a bit vector rather than an element in Zq. Let G be
a group of prime order q and g a fixed generator of G. The size of G is determined
by a security parameter λ, in particular, 1/q is negligible in λ.

The public-key encryption system E1:

—Key Generation. Let ` := d3 log2 qe. Choose random g1, . . . , g` in G and a
random vector ~s = (s1, . . . , s`) in {0, 1}`. Let h ← (gs11 · · · g

s`

` )−1 and define the
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public and secret keys to be

pk := (g1, . . . , g`, h) and sk := (gs1 , . . . , gs`)

Note that the secret key sk is a random vector ~s in {0, 1}` encoded as a vector
of ` group elements.

—Encryption. To encrypt a group element m ∈ G, choose a random r
R← Zq and

output the ciphertext (
gr1, . . . , g

r
` , hr ·m

)
—Decryption. Let (c1, . . . , c`, d) be a ciphertext and sk = (v1, . . . , v`) a secret

key. Do:
—decode the secret key: for i = 1, . . . , ` set si ← 0 if vi = 1 and si ← 1 otherwise;
—output m← d · (cs11 · · · c

s`

` ).
It is easy to verify that the system is correct, that is, the decryption algorithm
decrypts properly constructed ciphertexts.

3.1 Discussion and outline of the security proof

Proving that the system is circular secure is somewhat involved. Before proving
security, we give some intuition for the construction and its proof. First, consider
the basic ElGamal system. The public key is a pair (g, gx) ∈ G2 and the secret key
is x ∈ Zq. A 1-cycle for this system, namely E(pk, sk), is a ciphertext (gr, e(x) ·grx)
where e(·) is some invertible encoding function mapping Zq to G. To prove 1-circular
security we would need to show that the 4-tuple(

g, gx, gr, e(x) · grx
)
∈ G4 (1)

is indistinguishable from a random 4-tuple in G4, but this is unlikely to follow from
DDH.

It is tempting to define the secret key as sk := vx (for some generator v), in
which case the 1-cycle becomes (gr, vx · grx). The resulting system can be shown
to be 1-circular secure under DDH. Unfortunately, the system does not work since
one cannot decrypt ElGamal encryptions using the key sk = vx.

As a compromise between these two systems, we pick the secret key as an `-bit
vector ~s R← {0, 1}` and store the key as sk := (gs1 , . . . , gs`). We decrypt using sk
by going back to the bit-vector representation. The challenge is to prove n-circular
security from the DDH assumption.

3.1.1 Proof outline. It is instructive to attempt a direct proof that the system
E1 is 1-circular secure. Observe that in the system E1, it is easy to construct
“ciphertext vectors” whose decryption are elements of the secret key: For every
1 ≤ i ≤ `, the (`+ 1)-vector

(1, . . . , 1, g, 1 . . . , 1)

with g in position i and 1’s everywhere else, decrypts to the secret-key element gsi .
Hence the simulator can generate “an encryption of the secret key” without knowing
the secret key itself. This almost suffices for the proof, except that these vectors
are not really valid ciphertext vectors, since the encryption algorithm would never
output them.
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We therefore begin by moving to an “expanded variant” of our system (which we
call E`+1) that has the same decryption procedure, but where every (`+ 1)-vector
is a valid ciphertext (see description later in Section 3.2). Moreover, E`+1 has the
same “blinding” properties as ElGamal, so the simulator can produce not just one
encryption of the secret key but a random encryption of it. This is enough to
prove that the expanded system E`+1 is 1-circular secure. Moving from 1-circular
to n-circular security is done using homomorphic properties: E`+1 is homomorphic
with respect to both the plaintext and secret key, so it is possible to translate an
encryption of m with respect to secret key ~s to an encryption of m · d with respect
to secret key ~s ⊕ ~δ, just by knowing d and ~δ. This allows the simulator to first
produce a 1-cycle and then expand it into an n-clique. The circular security (or
even clique-security) of E1 follows.

Finally we deduce the security of E1 from that of E`+1, roughly because the
adversary gets “strictly less information” when attacking E1 than when attacking
the expanded variant E`+1.

3.2 Proof of circular-security

We now prove that the system E1 provides circular security. As mentioned above,
we actually prove a slightly stronger statement, namely that E1 is KDM-secure with
respect to the set of affine functions.

3.2.0.1 Affine functions.. The set of affine functions acting on Sn is defined
as follows. Let sk1, . . . , skn be n secret keys generated by G (each an `-vector over
G). Let ~s be the vector in Gn` obtained by concatenating these n secret keys.
For every n`-vector ~u = (ui) over Zq and every scalar h ∈ G, there is a natural
map from Gn` to G, that can be informally described as f~u,h : ~s −→ (~u · ~s+ h).
More precisely, we have

f~u,h(~s) def=
n∏̀
i=1

sui
i · h ∈ G.

We call f~u,h an affine function from Gn` to G.

Definition 3.1. The set of affine functions Cn` is the set of all functions f~u,h,
where ~u ∈ Zn`q and h ∈ G.

The set Cn` acts on n-tuples of secret keys by viewing the n-tuple as a vector in
Gn`, and it maps every such vector to an element of G.

3.2.0.2 KDM-security theorem with respect to Cn`.. The following theorem shows
that if the DDH assumption holds in the group G then E1 is n-way KDM-secure
with respect to the set Cn` of affine functions, for any n = n(λ) that is polynomial
in the security parameter. Circular security follows since Cn` contains the constant
and selector functions.5

5The set Cn` includes “selector functions” for each element from each secret key (rather than

“selector functions” that select entire keys). This makes no difference in our case, since our

scheme encrypts element by element (so a secret key is encrypted as ` separate ciphertext vectors,
one for each element of the secret key).
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Theorem 3.2. For any n > 0 and for any Cn`-KDM adversary A, there exists
a DDH adversary B (whose running time is about the same as that of A) such that

KDM(n)Adv[A, E1] ≤ (3`− 2) ·DDH Adv[B,G] + 1/q

Note that this bound is independent of n.

3.2.1 Switching to additive notation. Our proof requires a fair amount of linear
algebra. To make it clearer, we will be using additive notation for the group G; note
that G and Gk are vector spaces over Zq. (Recall that we already used additive
notation when we informally described the class of affine functions above.) To avoid
ambiguity, we use Latin letters for elements of Zq and Greek letters for elements of
G. In particular, let G be generated by γ. We use lower-case letters for scalars and
column vectors, and upper-case letters for matrices. We write ~µ · ~v for the inner
product and ~µ× ~v for the outer product:

~µ · ~v := ~µ>~v =
∑
i

µivi and ~µ× ~v := ~µ ~v> = (µivj)i,j ∈ Gdim(µ)×dim(v)

When we write the product of a matrix or vector of elements of G with a matrix
or vector of elements of Zq, we mean to use the standard formula. For example, by
~µ ·~v we mean

∑
i µivi, which would be written in multiplicative notation as

∏
i µ

vi
i .

It is easily seen that the usual properties of vectors and matrices still hold in this
notation (for any term involving at most one literal from G and all other literals
from Zq).

We use 0 to denote both the number zero and the identity element in G, the
meaning will be clear from the context. We write 0` for a column vector of ` zeros,
and 0k×` for a k × ` matrix of zeros. We write Idi for the identity matrix in Zi×iq .
When A,B are two matrices with the same number of rows (and both over G or
both over Zq), then we write

(
A B

)
for the augmented matrix consisting of all

the columns of A followed by all the columns of B.
The definitions of linear independence of vectors, vector spaces and subspaces,

rank of matrices, etc., are all standard, and we use the same notions for both G
and Zq. We write Rki

(
Za×bq

)
(resp Rki

(
Ga×b)) for the set of matrices in Za×bq

(resp Ga×b) with rank i. As a special case, we write GLi(Zq) for the invertible i× i
matrices over Zq.

3.2.2 The system E1 in additive notation

—Key Generation. Let ` := d3 log2 qe. Choose a random nonzero vector ~ψ R← G`

and a random vector ~s in {0, 1}` ⊂ Z`q. Let δ ← −~ψ ·~s ∈ G and define the public
and secret keys to be

pk :=
(
~ψ> δ

)
∈ G1×(`+1) and sk := ~sγ ∈ G`

Though the secret key is encoded as sk = ~sγ ∈ G`, below it will be convenient to
consider also the decoded form. Specifically, we refer to the ` + 1 binary vector
~s′ =

(
~s> 1

)> ∈ Z`+1
q as the decoded secret key.
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—Encryption. To encrypt a message µ ∈ G, choose a random r
R← Znq and output

the ciphertext row-vector

~ξ> ←
(
r ~ψ> rδ + µ

)
= r pk +

(
01×` µ

)
∈ G1×(`+1) (2)

—Decryption. Let ~ξ> ∈ G1×(`+1) be the ciphertext. Decryption is just an inner
product between the ciphertext and the decoded secret key:

µ← ~ξ ·
(
~s> 1

)>
Decryption works since the decoded secret key

(
~s> 1

)> is orthogonal to the
public key pk.

We observe that an ` + 1 vector over G is decrypted to zero if and only if it
belongs to the subspace orthogonal to the decoded secret key ~s′, and every coset of
this subspace is decrypted to a different element of G. On the other hand, “valid en-
cryptions of zero” (i.e., the ones obtained from the encryption algorithm) are taken
from a small subspace of the vectors orthogonal to ~s′, namely the one-dimensional
subspace spanned by the public key pk. Similarly, “valid encryptions” of other
elements are obtained as shifting this one-dimensional subspace by multiples of(

01×` 1
)
.

3.2.3 A few lemmata. We present some simple lemmata and facts about E1.
First, we show that DDH implies that it is difficult to determine the rank of a
matrix of group elements. In particular, it is difficult to distinguish a random
matrix of rank r1 from a random matrix of rank r2 > r1.

Lemma 3.3 Matrix DDH. Let 1 ≤ r1 < r2 ≤ a, b be positive integers, and let
A : Ga×b → {0, 1} be a polynomial-time algorithm. Write

P (A, i) := Pr
[
Φ R← Rki

(
Ga×b) : A(Φ) = 1

]
Then there is a DDH adversary B, running in about the same time as A, such that∣∣P (A, r2)− P (A, r1)

∣∣ ≤ (r2 − r1) DDH Adv[B,G]

Proof. We use a hybrid argument between the r2 − r1 + 1 distributions

Rki
(
Ga×b) where i ∈ [r1, r2]

The algorithm B is given a DDH challenge (α1, α2, α3, α4). It picks a random
i

R← [r1 + 1, r2] and sets

Φ1 :=


α1 α2

α3 α4

γ Idi−2

0(a−i)×(b−i)

 ∈ Ga×b

with all the other blocks zero. B then chooses

L
R← GLa(Zq) and R

R← GLb(Zq) and sets Φ2 := LΦ1R

B now calls A(Φ2) and outputs whatever A outputs.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Now if (α1, α2, α3, α4) was drawn from PDDH, then Φ1 has rank i− 1, and Φ2 is
uniform in Rki−1

(
Ga×b). But if (α1, α2, α3, α4) was drawn from RDDH, then Φ1 has

rank i, and Φ2 is uniform in Rki
(
Ga×b). The lemma then follows by the standard

hybrid argument.

We will also need the following lemma on universal hashing. Recall that a distri-
bution D on a set X is ε-uniform if

∑
x∈X

∣∣∣D(x)− 1
|X |

∣∣∣ ≤ ε.
Lemma 3.4 Simplified left-over hash lemma. Let H be a 2-universal hash

family from a set X to a set Y. Then the distribution

(H,H(x)) where H
R← H and x

R← X

is
√
|Y|

4|X | -uniform on H× Y.

Proof. This is an immediate corollary from [Hastad et al. 1999] (see also [Shoup
2005, Theorem 6.21]).

Recall that the secret key in our system is a vector in {0, 1}` where ` = d3 log2 qe.
We therefore obtain the following corollary of Lemma 3.4.

Corollary 3.5. Let ~r R← Z`q, and ~s
R← {0, 1}`. Then

(
~r> −~r · ~s

)> is 1
q -

uniform in Z`+1
q .

Proof. Let H~r(~s) := −~r · ~s. Then {H~r : ~r ∈ Z`q} is 2-universal, so that(
~r> −~r · ~s

)> is
√

q
4·2` -uniform in Z`+1

q . Since ` = d3 log2 qe we have
√

q
4·2` ≤

1
2q <

1
q .

We note that Erdös and Hall [Erdös and Hall 1976] proved a slightly stronger
version of Corollary 3.5 — they obtain a similar result with a smaller ` (i.e. ` ≈
d2 log2 qe). This enables us to slightly shorten our public and secret keys. However,
the proof of Corollary 3.5 using the left over hash lemma is more general and enables
us to prove security of an extension discussed in Section 4.

3.2.4 The expanded system E`+1. As discussed in Section 3.1.1, a technical dif-
ficulty in the proof is that not every (` + 1)-vector over G is a valid ciphertext in
E1. We therefore introduce an “expanded version” of our scheme (denoted E`+1)
that has the same secret key and decryption procedure, but a larger public key.
In this system every vector in G1×(`+1) is a valid ciphertext. We later prove that
E`+1 is n-way KDM-secure with respect to Cn`, and then use it to deduce also the
KDM-security of the original system E1.

—Key Generation. Let ` = d3 log2 qe. Choose a random secret key ~s R← {0, 1}` ⊂
Z`q. Choose a random matrix Ψ R← Rk`

(
G(`+1)×`), and set Φ :=

(
Ψ −Ψ~s

)
∈

G(`+1)×(`+1). Define the public and secret keys to be

pk := Φ and sk := ~sγ

That is, the secret key is as in the system E1, but we use an expanded public
key Φ, which is a matrix of ` + 1 public keys from E1 (all with respect to the
same secret key ~s).
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—Encryption. To encrypt an element µ ∈ G, choose a random row vector ~r R←
Z1×(`+1)
q and output the ciphertext

ξ ← ~rΦ +
(

01×` µ
)
∈ G1×(`+1)

This is similar to the original system E1, except that instead of a random multiple
of the public-key vector as in Eq. (2), here we use a random linear combination
of all the rows of the expanded public key Φ.

—Decryption. Decryption is the same as in E1. Decryption works since the
decoded secret key

(
~s> 1

)> is orthogonal to all the rows of the expanded public
key Φ.

We stress that the main difference between E1 and E`+1 is that in E1 the public key
is just one vector orthogonal to the decoded secret key. In E`+1, on the other hand,
the expanded public key spans the entire (`-dimensional) subspace orthogonal to
the decoded secret key. Jumping ahead, we will later show that under DDH, the
adversary cannot distinguish between ciphertext vectors in E1 (taken from a 1-
dimensional subspace) and ciphertext vectors in E`+1 (taken from an `-dimensional
subspace). Thus essentially the only difference from the adversary’s perspective is
that in E`+1 it sees more vectors in the public key.
In the proof below we use the following simple facts about E`+1:

Totality and uniformity. For any secret key sk with public key Φ and any
element µ, if a ciphertext ~ξ decrypts to µ using sk, then ~ξ is a possible output of
E(Φ, µ), i.e. a valid encryption of µ. Furthermore, all possible outputs of E(Φ, µ)
are equally likely.

Public-key blinding. Let Φ ∈ G(`+1)×(`+1) be a public key for some secret key
sk and let R be a random invertible matrix, R R← GL`+1(Zq). Then blind-pk(Φ) :=
RΦ is a uniformly random public key for sk. Furthermore, encryption with Φ and
with RΦ produce the same distribution of ciphertexts.

Ciphertext blinding. Let Φ ∈ G(`+1)×(`+1) be a public key, and let ~ξ be any
encryption of µ ∈ G with respect to Φ. Let ~r R← Z1×(`+1)

q be a random row vector,
then blind-ct(Φ, ~ξ) := ~rΦ + ~ξ draws uniformly at random from E(Φ, µ).

Total blinding. If instead of being a valid public key, Φ is a matrix of full rank
`+ 1, then the output of blind-ct(Φ, ~ξ) is uniformly random in G1×(`+1).

Self-referential encryption. Let sk = (γ1, . . . , γ`)> ∈ G` be a secret key with
public key Φ. Denoting by ei ∈ {0, 1}` the unit vector with 1 in position i and 0
elsewhere, we have that

(
γei 0

)
is an encryption of the secret-key element γi with

respect to Φ.

Plaintext homomorphism. Let f(~µ) = ~a ·~µ+β be an affine function from Gn to
G. Fix some vector ~µ ∈ Gn, let Φ be a public key, and let Ξ ∈ Gn×(`+1) be a matrix
whose i’th row is an encryption of µi with respect to Φ. Then ~aΞ +

(
01×` β

)
is

an encryption of f(~µ) with respect to Φ.

Secret-key homomorphism. Let ~s ∈ {0, 1}` be used for a secret key with public
key Φ, and let ~ξ R← E(Φ, µ) be an encryption of an element µ ∈ G. Let f(~x) = A~x+~b
ACM Journal Name, Vol. V, No. N, Month 20YY.
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be an invertible affine function from Z`q to Z`q, and set

Mf :=
(

A ~b
01×` 1

)
so that Mf

(
~x> 1

)> =
(
f(~x)> 1

)>
Suppose that f(~s) ∈ {0, 1}` (so f(~s) can be used for a secret key). Then ΦM−1

f is
a public key for f(~s), and ~ξM−1

f is an encryption of µ with public key ΦM−1
f . In

particular, extend the xor function ⊕ to Zq × {0, 1} → Zq by

x⊕ 0 := x and x⊕ 1 := 1− x

and extend it to vectors by applying it element-wise. Then for a fixed ~a ∈ {0, 1}`,
the function f(~s) := ~s⊕~a is an affine function, so we can compute a public key and
ciphertext vectors for ~s⊕ ~a from a public key and ciphertext vectors for ~s.

3.2.5 E`+1 is KDM-secure with respect to Cn`
Theorem 3.6. For any Cn`-KDM-adversary A against E`+1 there exists a DDH-

adversary B (whose running time is about the same as that of A) such that

KDM(n)Adv[A, E`+1] ≤ (2`− 1) DDH Adv[B,G] + 1/q

Proof. We present this proof as a series of games, and we let wi denote the
probability that the adversary wins Game i.

Game 0. This game is identical to the Cn`-KDM-security game defined in Sec-
tion 2.1. By definition, ∣∣∣∣w0 −

1
2

∣∣∣∣ = KDM(n)Adv[A, E`+1] (3)

Game 1. Game 1 looks the same as Game 0 to the adversary, but the challenger
does not use the secret keys internally. For setup:

—The challenger generates a secret key ~s R← {0, 1}` with public key Φ, and then
“forgets” ~s. That is, the challenger does not use ~s for the rest of Game 1.

—The challenger chooses n random vectors ~a1, . . . ,~an
R← {0, 1}`. It then produces

a view to the adversary that is consistent with the n secret keys ski := (~s⊕~ai)γ,
but without ever using the “forgotten” ~s.

—For each i ∈ [1, n], the challenger uses the secret-key homomorphism and
public-key blinding properties of E1 to generate a uniformly random public
key pki for ski from (Φ,~ai).

For brevity, let ~σ := ( sk>1 | sk>2 | . . . | sk>n )> denote the concatenation of the
encoded secret keys (but the challenger does not use the value of ~σ). To compute
E(pki, f(~σ)) for an affine function f in Cn`:

—For each j ∈ [1, n], the challenger uses the self-referential encryption property
to generate an encryption E(pkj , µ) for every element µ ∈ skj , and uses secret-
key homomorphism to transform it into an encryption under pki, E(pki, µ).

—The challenger concatenates these to obtain a matrix Ξ of encryptions under pki
of all the elements in ~σ.
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—The challenger uses the plaintext homomorphism property to generate an
encryption ~ξ ← E(pki, f(~σ)).

—The challenger sends blind-ct(pki, ~ξ) to the adversary.

The distribution of secret keys, public keys and ciphertexts is identical to Game 0,
so

w1 = w0 (4)

Informally, the challenger has used a single public key Φ to generate an entire
clique of ciphertexts, without knowing any of their secret keys. It remains to show
formally that this gives the adversary no useful information.

The remaining games will be identical to Game 1, except that the initial public
key Φ will be computed differently.

Game 2. In Game 2, the challenger does:

Ψ R← Rk1

(
G(`+1)×`

)
and Φ←

(
Ψ −Ψ~s

)
∈ G(`+1)×(`+1)

This is the same procedure used in Game 1, except that now Ψ has rank 1 instead
of rank `. Lemma 3.3 tells us that there is a DDH-adversary B, running in about
the same time as A, such that

|w2 − w1| ≤ (`− 1) DDH Adv[A,G] (5)

Note that Ψ here may be computed by choosing random nonzero vectors ~ψ R← G`+1

and ~r
R← Z`q, and setting Ψ ← ~ψ × ~r. Thus we see that Φ = ~ψ ×

(
~r> −~r · ~s

)> is
(1/q)-uniform in Rk1

(
G(`+1)×(`+1)

)
by Corollary 3.5.

Game 3. Since Φ is (1/q)-uniform in Rk1

(
G(`+1)×(`+1)

)
, we can replace it by a

random matrix in Rk1

(
G(`+1)×(`+1)

)
. Thus, Game 3 is the same as Game 2, except

that Φ R← Rk1

(
G(`+1)×(`+1)

)
. Then

|w3 − w2| ≤ 1/q (6)

Note that in Game 3 the secret ~s is not used anywhere.

Game 4. Game 4 is the same as Game 3, except that Φ R← Rk`+1

(
G(`+1)×(`+1)

)
.

By the total blinding property of E`+1, the ciphertexts returned to the adversary
are all uniformly random, regardless of the challenger’s bit b. Therefore,

w4 =
1
2

(7)

On the other hand, by lemma 3.3, there exists a DDH-adversary B, running in
about the same time as A, such that

|w4 − w3| ≤ `DDH Adv[B,G] (8)

Combining equations (3) through (8), we find that

KDM(n)Adv[A, E`+1] ≤ (2`− 1) DDH Adv[B,G] + 1/q

Similarly, for the Lr version, we find that

KDM(n)Adv[A, E`+1] ≤ (2`− 2r + 1) L Advr[B,G] + 1/q
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This completes the proof of Theorem 3.6.

3.2.6 E1 is KDM-secure with respect to Cn`. We now deduce the KDM-security
of E1 from that of E`+1.

Lemma 3.7. For any Cn`-KDM adversary A against E1, there is a DDH-adversary
B1 and a Cn`-KDM adversary B2 against E`+1, both running in about the same time
as A, such that

KDM(n)Adv[A, E1] ≤ (`− 1) ·DDH Adv[B1,G] + KDM(n)Adv[B2, E`+1]

Proof. We present the proof as a series of games. Let wi denote the probability
that the adversary A wins Game i.

Game 0. Game 0 is identical to the Cn`-KDM-security game with respect to E1
defined in Section 2.1. By definition,∣∣∣∣w0 −

1
2

∣∣∣∣ = KDM(n)Adv[A, E1]

Game 1. Game 1 is the same as Game 0, except that the challenger generates
public keys and encryptions in a different but equivalent way. Specifically,

—The challenger chooses a random rank-1 matrix Ψ0
R← Rk1

(
G(`+1)×`).

—The challenger chooses n secret keys ~si
R← {0, 1}`, for i = 1, . . . , n. It creates the

corresponding n public keys as follows. For i ∈ [1, n] generate the public key pki
by choosing two random invertible matrices Li

R← GL`+1(Zq) and Ri
R← GL`(Zq)

and setting

Ψi ← Li Ψ0Ri and pki := Φi ←
(

Ψi −Ψi~si
)
.

Note that the matrix Ψi is a uniformly random rank-1 matrix and is independent
of Ψ0.

—For each i ∈ [1, n], the challenger chooses a random nonzero row of the public key
Φi, and sends it to the adversary as the E1-public-key ϕi. This row is nonzero,
random and orthogonal to ~si by construction, so it is a valid public key for ~si
under E1.

—When answering queries, instead of encrypting a message ~µ with ϕi under the
system E1, the challenger encrypts it under E`+1 using Φi as the public key. In
other words, it responds with RΦi +

(
0 ~µ

)
where R R← Zn×(`+1)

q . Note that Φi
is not a valid public key for E1, but only because it has rank 1 instead of rank `.

Because Φi has rank 1, all rows of Φi are multiples of ϕi. Therefore, the distributions
of ciphertexts ~r×ϕi +

(
0 ~µ

)
under E1 and RΦi +

(
0 ~µ

)
in Game 1 are identical.

The distributions of public and secret keys are also identical, so the attacker sees
the same distribution of messages as in Game 0. As a result, w1 = w0.

Game 2. Game 2 is the same as Game 1, except that the challenger chooses
Ψ0

R← Rk`
(
G(`+1)×`) so that Φ is a random, valid public key under E`+1. This

is the only difference between Games 1 and 2. By Lemma 3.3, there is a DDH
adversary B1, running in about the same time as A, such that

|w2 − w1| ≤ (`− 1) DDH Adv[B1,G]
ACM Journal Name, Vol. V, No. N, Month 20YY.
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At this point the attacker is attacking E`+1, with all but one row of the public keys
hidden. Call this process B2; then∣∣∣∣w2 −

1
2

∣∣∣∣ = KDM(n)Adv[B2, E`+1]

so that

KDM(n)Adv[A, E1] ≤ (`− 1) DDH Adv[B1,G] + KDM(n)Adv[B2, E`+1]

as claimed.

Theorem 3.2 now follows by combining Theorem 3.6 with Lemma 3.7.

4. EXTENSIONS

4.1 Security under the linear assumption.

The linear assumption, introduced in [Boneh et al. 2004], is a weaker assumption
than DDH. Weaker versions of the linear assumption were studied in [Shacham
2007; Hofheinz and Kiltz 2007]. The proof of Theorem 3.6 generalizes easily to use
the k-linear assumption which we now introduce.

Let G be a group of prime order q. We let Pk−linear be the distribution (g1, gx1
1 , . . . , gk, g

xk

k , h, hz)
in G2k+2 where g1, . . . , gk and h are random generators of G, x1, . . . , xk are uniform
in Zq, and z = x1 + . . .+ xk. We let Rk−linear be the same distribution, where z is
random subject to z 6= x1 + . . .+ xk. An k-linear (Lk) adversary A takes as input
a tuple (g1, ĝ1, . . . , gk, ĝk, h, ĥ) in G2k+2 and outputs 0 or 1. Define

L Advk[A,G] :=
∣∣∣∣Pr[x R← Pk−linear : A(x) = 1] − Pr[x R← Rk−linear : A(x) = 1]

∣∣∣∣
Informally, we say that the Lk assumption holds in G if L Advk[A,G] is negligible
for all efficient A. Note that the DDH assumption is equivalent to L1.

It is easily seen that Lemma 3.3 extends to Lk. That is, under Lk, it is difficult
to distinguish Rkk1

(
Ga×b) from Rkk2

(
Ga×b) when k ≤ k1 < k2 ≤ a, b, which we

call the matrix-k-linear problem. It suffices in our proof that the matrix-k-linear
problem is hard; we do not need the k-linear assumption itself. Note that when
k > 1, the hardness of the k-linear problem does not easily follow from the hardness
of the matrix-k-linear problem, so this may be an even weaker assumption than Lk.

For security under Lk, we construct a system Ek which is similar to the expanded
system E`+1:

—Key Generation. Let ` = d(2 + k) log2 qe. Choose a random secret key
~s

R← {0, 1}` ⊂ Z`q. Choose a random matrix Ψ R← Rkk
(
Gk×`), and set Φ :=(

Ψ −Ψ~s
)
∈ Gk×(`+1). Define the public and secret keys to be

pk := Φ and sk := ~sγ

That is, the secret key is as in the system E`+1, except that ` is larger and Ψ has
only k rows.

—Encryption. To encrypt an element µ ∈ G, choose a random row vector ~r R←
Z1×k
q and output the ciphertext

ξ ← ~rΦ +
(

01×` µ
)
∈ G1×(`+1)
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This is similar to the expanded system E`+1, except that ~r has only k rows.

—Decryption. Decryption is the same as in E1 and E`+1.

The changes to the security proof are minor. In Games 2 and 3, we must give
the public key rank k instead of rank 1. The larger ` = d(2 + k) log2 qe is required
to extend Corollary 3.5 to prove 1/q-uniformity of a rank-k public key.

Overall, these changes decrease the efficiency of the system, but allow a security
proof under a weaker assumption.

4.2 Shrinking the ciphertext and secret keys.

Ciphertexts and secret keys in our system contain ` := d3 log2 qe elements in G
where q = |G|. This size of ` is chosen so that secret keys have sufficient entropy
to make the distribution in Corollary 3.5 be (1/q)-uniform.

Recall that the secret key sk in our system is an encoding of a vector ~s ∈ {0, 1}`,
namely ski := g~si for i = 1, . . . , `. The vector ~s had to be binary for two reasons.
First, during decryption we need to recover ~s from its encoding sk. Second, the
proof of Theorem 3.6 relied on the fact that a vector ~s ∈ {0, 1}` can be mapped to
a random vector in {0, 1}` using an appropriate random affine map (i.e. by xoring
with a known random vector in {0, 1}`, which is an affine map).

Let T be the set of `-tuples that contains all `! permutations of (1, 2, . . . , `). It
is not hard to see that T satisfies the two properties mentioned above: (1) if we
encode an `-tuple in T by exponentiation as before then decoding can be done
efficiently during decryption, and (2) an element ~s ∈ T can be mapped to a random
element in T by the appropriate random affine transformation, namely a random
permutation matrix. Hence, the proof of the main theorem (Theorem 3.2) will go
through unchanged if algorithm G chooses ~s at random in the set T . Since the
set T is larger than the set {0, 1}` — the former is of size `! while the latter is of
size 2` — we can use a smaller value of ` and still satisfy the entropy bounds of
Corollary 3.5. In particular, it suffices to choose

` =
⌈

4.5 log2 q

log2 log2 q

⌉
so that `! > q3

This shrinks ciphertexts and secret keys by a factor of O(log log q) over the original
system.

5. ONE-WAY ENCRYPTION THAT IS NOT 2-CIRCULAR SECURE

Beyond constructing encryption systems for which we can prove circular security,
one may ask the more fundamental question of “what does it really take” to get
circular security. For example, can we obtain circular-secure encryption from CPA-
secure encryption? Recent work casts doubt on our ability to prove such implica-
tions using standard tools [Haitner and Holenstein 2008], but does not shed light
on the deeper question of the truth of it. In fact, today we cannot even rule out
the possibility that every CPA-secure system is also n-circular secure for all n ≥ 2.

In this section we try to make some progress toward ruling out this possibility.
Ideally, one would like to exhibit a CPA-secure system that is not (say) 2-circular
secure. Unfortunately, we did not find a candidate system. Instead, we show a
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weaker example of a one-way encryption system that breaks completely once an
n-cycle of encryptions is published (for any n).

One-way encryption is defined using the following game between a challenger and
an adversary A (over a plaintext space M):

init.. The challenger runs algorithm G(λ) to generate a public/secret
key pair (pk, sk). The challenger then picks a random message m R←M
and sends to the adversary the public key pk and the ciphertext c ←
E(pk,m).
response.. The adversary A responds with its guess m′ ∈ M for the
decryption of c and wins the game if m = m′.
We define AdvA,E(λ) to be the adversary’s advantage in wining this
game.

Definition 5.1. We say that a public key encryption scheme E provides one-way
encryption if Adv[A, E ](λ) is a negligible function in λ for any adversary A that
runs in expected polynomial time in λ.

Let E = (G,E,D) be a one-way secure system for message space M , and we
assume that the secret keys are contained in M . Consider an encryption scheme
Ē = (Ḡ, Ē, D̄) that operates on pairs of messages (i.e., has message space M ×M).

Key generation.. Run G twice to generate two public/secret keys pairs (pk1, sk1)
and (pk2, sk2). Output p̄k := pk1 as the public key and s̄k := (sk1, sk2) as the
secret key.

Encryption.. An encryption of a message (m1,m2) under p̄k = pk1 is the pair(
m1,Epk1

(m2)
)
.

Decryption.. Given a ciphertext (a, b) and secret key s̄k = (sk1, sk2), output the
pair (a,Dsk1(b)).

Claim 5.2. The system Ē above is a one-way encryption system if E is. How-
ever, an attacker seeing an encryption cycle (of any size) can find all the secret
keys involved.

The proof is straightforward, and is omitted here. The system Ē is one-way secure
on the message space M ×M . The key sk2 is there to ensure that Ē is one-way
secure when the message space is equal to the set of private keys. The “However”
part of the claim follows since an adversary seeing an encryption of a secret key
(sk1, sk2) under any public key gets sk1 in the clear, and therefore can decrypt any
message encrypted under the public key corresponding to (sk1, sk2).
Remark: In Ē the first half of the plaintext is transmitted in the clear. One can
partially hide this part too, as follows:

Assume that we have a one-way permutation f on secret-keys of E , and moreover
that f is defined and is one-way on the entire message space of E . Further assume
that from any secret key we can efficiently compute a corresponding public key
(which we denote by writing pk = P (sk)). Then define a system Ẽ = (G̃, Ẽ, D̃) as
follows:

Key generation.. Run G twice to generate two public/secret keys pairs (pk1, sk1)
and (pk2, sk2). Output p̃k := P (f(sk1)) as the public key and s̃k := (sk1, sk2) as
the secret key.
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Encryption.. An encryption of (m1,m2) under p̃k is
(
f(m1),Ep̃k(m1),Ep̃k(m2)

)
.

Decryption.. Given a ciphertext (a, b, c) and secret key s̄k = (sk1, sk2), compute
sk = f(sk1) and output the pair (Dsk(b),Dsk(c)).

Again, proving a claim analogous to Claim 5.2 is straightforward.

6. CONCLUSIONS

We presented the first encryption system that can be proved to be n-circular secure
under chosen-plaintext attack in the standard model. Security is based on the
Decision Diffie-Hellman assumption and holds even if the adversary is given affine
functions of the secret keys. In addition, we constructed in Section 5 a simple
system that is weakly secure, but breaks completely once a key-cycle is published.

An important remaining problem is to obtain circular security against chosen
ciphertext attacks. Other interesting problems are to improve the performance of
our system, and to construct a semantically secure system that becomes insecure
once an n-encryption cycle is published.
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